GeForce RTX 3070 Ti Mobile เทียบกับ RTX 2070 Max-Q
คะแนนประสิทธิภาพรวม
เราได้เปรียบเทียบ GeForce RTX 2070 Max-Q และ GeForce RTX 3070 Ti Mobile โดยครอบคลุมสเปกและผลการทดสอบที่เกี่ยวข้องทั้งหมด
RTX 3070 Ti Mobile มีประสิทธิภาพดีกว่า RTX 2070 Max-Q อย่างน่าประทับใจ 54% ตามผลการทดสอบแบบรวมของเรา
รายละเอียดหลัก
สถาปัตยกรรม GPU, กลุ่มตลาด, ความคุ้มค่า และพารามิเตอร์ทั่วไปอื่นๆ ที่ถูกนำมาเปรียบเทียบ
ตำแหน่งในการจัดอันดับประสิทธิภาพ | 191 | 72 |
จัดอันดับตามความนิยม | ไม่ได้อยู่ใน 100 อันดับแรก | ไม่ได้อยู่ใน 100 อันดับแรก |
ประสิทธิภาพการใช้พลังงาน | 26.03 | 27.86 |
สถาปัตยกรรม | Turing (2018−2022) | Ampere (2020−2024) |
ชื่อรหัส GPU | TU106B | GA104 |
ประเภทตลาด | แล็ปท็อป | แล็ปท็อป |
วันที่วางจำหน่าย | 29 มกราคม 2019 (เมื่อ 6 ปี ปีที่แล้ว) | 4 มกราคม 2022 (เมื่อ 3 ปี ปีที่แล้ว) |
สเปกโดยละเอียด
พารามิเตอร์ทั่วไป เช่น จำนวนเชดเดอร์, ความถี่พื้นฐานและความถี่บูสต์ของ GPU, กระบวนการผลิต, ความเร็วการประมวลผลและการเท็กซ์เจอร์ โปรดทราบว่าการใช้พลังงานของการ์ดจอบางรุ่นอาจเกินกว่า TDP ที่กำหนดไว้ โดยเฉพาะเมื่อทำการโอเวอร์คล็อก
พาธไลน์ / คอร์ CUDA | 2304 | 5632 |
ความเร็วสัญญาณนาฬิกาหลัก | 885 MHz | 915 MHz |
เพิ่มความเร็วสัญญาณนาฬิกา | 1185 MHz | 1410 MHz |
จำนวนทรานซิสเตอร์ | 10,800 million | 17,400 million |
เทคโนโลยีกระบวนการผลิต | 12 nm | 8 nm |
การใช้พลังงาน (TDP) | 80 Watt | 115 Watt |
อัตราการเติมเท็กซ์เจอร์ | 170.6 | 248.2 |
ประสิทธิภาพการประมวลผลจุดลอยตัว | 5.46 TFLOPS | 15.88 TFLOPS |
ROPs | 64 | 80 |
TMUs | 144 | 176 |
Tensor Cores | 288 | 176 |
Ray Tracing Cores | 36 | 44 |
ฟอร์มแฟกเตอร์และความเข้ากันได้
ข้อมูลเกี่ยวกับความเข้ากันได้กับอุปกรณ์คอมพิวเตอร์อื่นๆ มีประโยชน์เมื่อเลือกการกำหนดค่าคอมพิวเตอร์ในอนาคตหรืออัปเกรดคอมพิวเตอร์ที่มีอยู่ สำหรับการ์ดจอเดสก์ท็อป จะรวมถึงอินเทอร์เฟซและบัส (ความเข้ากันได้กับเมนบอร์ด) และขั้วต่อไฟเพิ่มเติม (ความเข้ากันได้กับหน่วยจ่ายไฟ)
ขนาดแล็ปท็อป | large | large |
อินเทอร์เฟซ | PCIe 3.0 x16 | PCIe 4.0 x16 |
ขั้วต่อพลังงานเสริม | None | None |
ความจุและประเภทของ VRAM
พารามิเตอร์ของ VRAM ที่ติดตั้ง: ประเภท, ขนาด, บัส, ความถี่ และแบนด์วิดท์ที่ได้ GPU แบบรวมไม่มี VRAM เฉพาะ และใช้ส่วนแบ่งของ RAM ระบบแทน
ประเภทหน่วยความจำ | GDDR6 | GDDR6 |
จำนวน RAM สูงสุด | 8 จีบี | 8 จีบี |
ความกว้างบัสหน่วยความจำ | 256 Bit | 256 Bit |
ความเร็วของนาฬิกาหน่วยความจำ | 1500 MHz | 1750 MHz |
384.0 จีบี/s | 448.0 จีบี/s | |
หน่วยความจำที่ใช้ร่วมกัน | - | - |
การเชื่อมต่อและเอาต์พุต
ประเภทและจำนวนของตัวเชื่อมต่อวิดีโอที่มีใน GPU ที่รีวิว โดยทั่วไป ข้อมูลในส่วนนี้จะแม่นยำเฉพาะสำหรับการ์ดเดสก์ท็อปแบบอ้างอิง (หรือที่เรียกว่า Founders Edition สำหรับชิป NVIDIA) ผู้ผลิต OEM อาจเปลี่ยนแปลงจำนวนและประเภทของพอร์ตเอาต์พุต ในขณะที่สำหรับการ์ดโน้ตบุ๊ก ความพร้อมใช้งานของพอร์ตวิดีโอบางประเภทขึ้นอยู่กับรุ่นของแล็ปท็อปมากกว่าตัวการ์ดเอง
ขั้วต่อจอแสดงผล | No outputs | No outputs |
รองรับ G-SYNC | + | - |
เทคโนโลยีที่รองรับ
โซลูชันทางเทคโนโลยีที่รองรับ ข้อมูลนี้จะมีประโยชน์หากคุณต้องการเทคโนโลยีเฉพาะสำหรับการใช้งานของคุณ
VR Ready | + | ไม่มีข้อมูล |
ความเข้ากันได้ของ API
รายการ API สำหรับการประมวลผล 3D และการประมวลผลทั่วไปที่รองรับ รวมถึงเวอร์ชันเฉพาะ
DirectX | 12 Ultimate (12_1) | 12 Ultimate (12_2) |
รุ่นเชดเดอร์ | 6.5 | 6.6 |
OpenGL | 4.6 | 4.6 |
OpenCL | 1.2 | 3.0 |
Vulkan | 1.2.131 | 1.3 |
CUDA | 7.5 | 8.6 |
ประสิทธิภาพการทดสอบแบบสังเคราะห์
การเปรียบเทียบผลการทดสอบที่ไม่เกี่ยวกับเกม โดยคะแนนรวมวัดบนมาตราส่วน 0-100 คะแนน
คะแนนรวมของการทดสอบแบบสังเคราะห์
นี่คือคะแนนการทดสอบแบบรวมของเรา เรากำลังปรับปรุงอัลกอริทึมรวมคะแนนอย่างต่อเนื่อง แต่หากคุณพบความไม่สอดคล้องใด ๆ สามารถแจ้งให้เราทราบในส่วนความคิดเห็นได้ เรามักจะแก้ไขปัญหาอย่างรวดเร็ว
Passmark
นี่คือการทดสอบ GPU ที่พบได้บ่อยที่สุด โดยจะประเมินการ์ดจอภายใต้ภาระงานหลากหลายประเภท โดยให้การทดสอบแยกต่างหาก 4 ครั้งสำหรับ Direct3D เวอร์ชัน 9, 10, 11 และ 12 (เวอร์ชันสุดท้ายใช้ความละเอียด 4K หากทำได้) รวมถึงการทดสอบเพิ่มเติมที่ใช้คุณสมบัติ DirectCompute
3DMark 11 Performance GPU
3DMark 11 เป็นการทดสอบ DirectX 11 เก่าโดย Futuremark ซึ่งประกอบไปด้วย 4 การทดสอบจาก 2 ฉาก: ฉากแรกแสดงการสำรวจซากเรือจมใต้น้ำโดยเรือดำน้ำหลายลำ อีกฉากหนึ่งแสดงวัดร้างลึกเข้าไปในป่าทึบ การทดสอบทั้งหมดใช้แสงวอลุ่ม (Volumetric Lighting) และ Tessellation อย่างหนัก แม้จะใช้ความละเอียด 1280x720 แต่ก็ยังค่อนข้างกินทรัพยากรฮาร์ดแวร์ ยกเลิกไปในเดือนมกราคม 2020 และถูกแทนที่โดย Time Spy
3DMark Vantage Performance
3DMark Vantage เป็นการทดสอบ DirectX 10 เก่าที่ใช้ความละเอียด 1280x1024 โดยมีฉากหลัก 2 ฉาก: ฉากแรกแสดงเด็กผู้หญิงคนหนึ่งหนีออกจากฐานทัพในถ้ำกลางทะเล และอีกฉากหนึ่งแสดงยานอวกาศบุกโจมตีดาวเคราะห์ที่ไร้การป้องกัน ยกเลิกไปในเดือนเมษายน 2017 และแนะนำให้ใช้การทดสอบ Time Spy แทน
3DMark Fire Strike Graphics
Fire Strike เป็นการทดสอบ DirectX 11 สำหรับเกมพีซี ประกอบด้วยการทดสอบ 2 ฉากที่แสดงการต่อสู้ระหว่างมนุษย์และสิ่งมีชีวิตที่ทำจากลาวา ใช้ความละเอียด 1920x1080 และสามารถแสดงกราฟิกที่สมจริง กินทรัพยากรฮาร์ดแวร์สูง
3DMark Cloud Gate GPU
Cloud Gate เป็นการทดสอบ DirectX 11 ระดับ 10 ที่ล้าสมัย ซึ่งเคยใช้สำหรับพีซีตามบ้านและแล็ปท็อปพื้นฐาน แสดงฉากการปล่อยยานอวกาศผ่านอุปกรณ์เทเลพอร์ตอวกาศประหลาด ด้วยความละเอียด 1280x720 เช่นเดียวกับ Ice Storm Benchmark ถูกยกเลิกในเดือนมกราคม 2020 และถูกแทนที่โดย 3DMark Night Raid
3DMark Ice Storm GPU
Ice Storm Graphics เป็นการทดสอบล้าสมัยในชุดการทดสอบ 3DMark ซึ่งเคยใช้วัดประสิทธิภาพของแล็ปท็อประดับเริ่มต้นและแท็บเล็ต Windows ใช้คุณสมบัติของ DirectX 11 ระดับ 9 ในการแสดงฉากต่อสู้ระหว่างยานอวกาศสองกองใกล้กับดาวเคราะห์น้ำแข็งที่ความละเอียด 1280x720 ยกเลิกไปในเดือนมกราคม 2020 และถูกแทนที่โดย 3DMark Night Raid
3DMark Time Spy Graphics
ประสิทธิภาพในการเล่นเกม
มาดูกันว่าการ์ดจอที่นำมาเปรียบเทียบเหมาะสำหรับการเล่นเกมมากน้อยแค่ไหน โดยผลการทดสอบเกมเฉพาะจะวัดเป็นเฟรมต่อวินาที (FPS)
ค่า FPS เฉลี่ยจากเกมพีซีทั้งหมด
นี่คือค่าเฉลี่ยเฟรมต่อวินาทีจากเกมยอดนิยมหลากหลายเกมในหลายความละเอียด:
Full HD | 99
−18.2%
| 117
+18.2%
|
1440p | 57
−29.8%
| 74
+29.8%
|
4K | 41
−22%
| 50
+22%
|
ประสิทธิภาพ FPS ในเกมยอดนิยม
Full HD
Low Preset
Counter-Strike 2 | 55−60
−88.1%
|
111
+88.1%
|
Cyberpunk 2077 | 60−65
−105%
|
129
+105%
|
Full HD
Medium Preset
Battlefield 5 | 76
−48.7%
|
110−120
+48.7%
|
Counter-Strike 2 | 55−60
−67.8%
|
99
+67.8%
|
Cyberpunk 2077 | 32
−203%
|
97
+203%
|
Forza Horizon 4 | 130−140
−84.1%
|
254
+84.1%
|
Forza Horizon 5 | 75−80
−68.4%
|
133
+68.4%
|
Metro Exodus | 93
−14%
|
100−110
+14%
|
Red Dead Redemption 2 | 60−65
−39.7%
|
85−90
+39.7%
|
Valorant | 150
−54%
|
231
+54%
|
Full HD
High Preset
Battlefield 5 | 102
−10.8%
|
110−120
+10.8%
|
Counter-Strike 2 | 55−60
−54.2%
|
91
+54.2%
|
Cyberpunk 2077 | 27
−189%
|
78
+189%
|
Dota 2 | 102
−39.2%
|
142
+39.2%
|
Far Cry 5 | 83
−20.5%
|
100
+20.5%
|
Fortnite | 140−150
−35%
|
190−200
+35%
|
Forza Horizon 4 | 130−140
−46.4%
|
202
+46.4%
|
Forza Horizon 5 | 75−80
−48.1%
|
110−120
+48.1%
|
Grand Theft Auto V | 90
−56.7%
|
141
+56.7%
|
Metro Exodus | 68
+83.8%
|
37
−83.8%
|
PLAYERUNKNOWN'S BATTLEGROUNDS | 214
+1.4%
|
210−220
−1.4%
|
Red Dead Redemption 2 | 48
−83.3%
|
85−90
+83.3%
|
The Witcher 3: Wild Hunt | 100−110
−67.3%
|
160−170
+67.3%
|
Valorant | 64
−89.1%
|
121
+89.1%
|
World of Tanks | 270−280
−2.2%
|
270−280
+2.2%
|
Full HD
Ultra Preset
Battlefield 5 | 65
−73.8%
|
110−120
+73.8%
|
Counter-Strike 2 | 55−60
−39%
|
82
+39%
|
Cyberpunk 2077 | 23
−200%
|
69
+200%
|
Dota 2 | 121
−14%
|
138
+14%
|
Far Cry 5 | 129
+22.9%
|
100−110
−22.9%
|
Forza Horizon 4 | 130−140
−29%
|
178
+29%
|
Forza Horizon 5 | 75−80
−27.8%
|
101
+27.8%
|
PLAYERUNKNOWN'S BATTLEGROUNDS | 78
−171%
|
210−220
+171%
|
Valorant | 129
−49.6%
|
193
+49.6%
|
1440p
High Preset
Dota 2 | 50−55
−77.4%
|
94
+77.4%
|
Grand Theft Auto V | 50−55
−77.4%
|
94
+77.4%
|
PLAYERUNKNOWN'S BATTLEGROUNDS | 170−180
+0%
|
170−180
+0%
|
Red Dead Redemption 2 | 29
−69%
|
45−50
+69%
|
World of Tanks | 190−200
−51.3%
|
290−300
+51.3%
|
1440p
Ultra Preset
Battlefield 5 | 55
−45.5%
|
80−85
+45.5%
|
Counter-Strike 2 | 30−35
−68.8%
|
54
+68.8%
|
Cyberpunk 2077 | 27−30
−59.3%
|
43
+59.3%
|
Far Cry 5 | 90−95
−59.1%
|
140−150
+59.1%
|
Forza Horizon 4 | 80−85
−65.1%
|
137
+65.1%
|
Forza Horizon 5 | 45−50
−61.2%
|
75−80
+61.2%
|
Metro Exodus | 72
−34.7%
|
95−100
+34.7%
|
The Witcher 3: Wild Hunt | 45−50
−81.3%
|
85−90
+81.3%
|
Valorant | 95
−52.6%
|
145
+52.6%
|
4K
High Preset
Counter-Strike 2 | 27−30
−72.4%
|
50−55
+72.4%
|
Dota 2 | 69
−37.7%
|
95
+37.7%
|
Grand Theft Auto V | 69
−37.7%
|
95
+37.7%
|
Metro Exodus | 22
−81.8%
|
40−45
+81.8%
|
PLAYERUNKNOWN'S BATTLEGROUNDS | 100
−56%
|
150−160
+56%
|
Red Dead Redemption 2 | 19
−68.4%
|
30−35
+68.4%
|
The Witcher 3: Wild Hunt | 69
−37.7%
|
95
+37.7%
|
4K
Ultra Preset
Battlefield 5 | 29
−93.1%
|
55−60
+93.1%
|
Counter-Strike 2 | 27−30
−72.4%
|
50−55
+72.4%
|
Cyberpunk 2077 | 10−12
−100%
|
22
+100%
|
Dota 2 | 93
−37.6%
|
128
+37.6%
|
Far Cry 5 | 40−45
−76.2%
|
70−75
+76.2%
|
Fortnite | 32
−122%
|
70−75
+122%
|
Forza Horizon 4 | 45−50
−68.8%
|
81
+68.8%
|
Forza Horizon 5 | 27−30
−70.4%
|
45−50
+70.4%
|
Valorant | 55
−41.8%
|
78
+41.8%
|
นี่คือวิธีที่ RTX 2070 Max-Q และ RTX 3070 Ti Mobile แข่งขันกันในเกมยอดนิยม:
- RTX 3070 Ti Mobile เร็วกว่า 18% ในความละเอียด 1080p
- RTX 3070 Ti Mobile เร็วกว่า 30% ในความละเอียด 1440p
- RTX 3070 Ti Mobile เร็วกว่า 22% ในความละเอียด 4K
นี่คือช่วงความแตกต่างของประสิทธิภาพที่สังเกตได้จากเกมยอดนิยม:
- ในเกม Metro Exodus ด้วยความละเอียด 1080p และการตั้งค่า High Preset อุปกรณ์ RTX 2070 Max-Q เร็วกว่า 84%
- ในเกม Cyberpunk 2077 ด้วยความละเอียด 1080p และการตั้งค่า Medium Preset อุปกรณ์ RTX 3070 Ti Mobile เร็วกว่า 203%
โดยรวมแล้ว ในเกมยอดนิยม:
- RTX 2070 Max-Q เหนือกว่าใน 3การทดสอบ (5%)
- RTX 3070 Ti Mobile เหนือกว่าใน 60การทดสอบ (94%)
- เสมอกันใน 1การทดสอบ (2%)
สรุปข้อดีและข้อเสีย
คะแนนประสิทธิภาพ | 30.20 | 46.46 |
ความใหม่ล่าสุด | 29 มกราคม 2019 | 4 มกราคม 2022 |
การผลิตชิปด้วยลิทอกราฟี | 12 nm | 8 nm |
การใช้พลังงาน (TDP) | 80 วัตต์ | 115 วัตต์ |
RTX 2070 Max-Q มีข้อได้เปรียบ ใช้พลังงานน้อยกว่าถึง 43.8%
ในทางกลับกัน RTX 3070 Ti Mobile มีข้อได้เปรียบ มีคะแนนประสิทธิภาพรวมสูงกว่าถึง 53.8% และได้เปรียบด้านอายุการเปิดตัวอยู่ที่ 2 ปี และมีกระบวนการลิทอกราฟีที่ก้าวหน้ากว่าถึง 50%
GeForce RTX 3070 Ti Mobile เป็นตัวเลือกที่เราแนะนำ เนื่องจากมีประสิทธิภาพเหนือกว่า GeForce RTX 2070 Max-Q ในการทดสอบประสิทธิภาพ
หากคุณยังมีคำถามเกี่ยวกับการเลือก GPU ที่รีวิวไว้ สามารถถามได้ในส่วนความคิดเห็น แล้วเราจะตอบกลับ