GeForce GTX 1650 Max-Q เทียบกับ Quadro P3000 มือถือ
คะแนนประสิทธิภาพรวม
เราได้เปรียบเทียบ Quadro P3000 มือถือ กับ GeForce GTX 1650 Max-Q รวมถึงสเปกและข้อมูลประสิทธิภาพ
P3000 มือถือ มีประสิทธิภาพดีกว่า GTX 1650 Max-Q อย่างน้อย 4% ตามผลการทดสอบแบบรวมของเรา
รายละเอียดหลัก
สถาปัตยกรรม GPU, กลุ่มตลาด, ความคุ้มค่า และพารามิเตอร์ทั่วไปอื่นๆ ที่ถูกนำมาเปรียบเทียบ
ตำแหน่งในการจัดอันดับประสิทธิภาพ | 333 | 343 |
จัดอันดับตามความนิยม | ไม่ได้อยู่ใน 100 อันดับแรก | ไม่ได้อยู่ใน 100 อันดับแรก |
ประสิทธิภาพการใช้พลังงาน | 15.41 | 36.88 |
สถาปัตยกรรม | Pascal (2016−2021) | Turing (2018−2022) |
ชื่อรหัส GPU | GP104 | TU117 |
ประเภทตลาด | เวิร์กสเตชันแบบพกพา | แล็ปท็อป |
วันที่วางจำหน่าย | 11 มกราคม 2017 (เมื่อ 8 ปี ปีที่แล้ว) | 23 เมษายน 2019 (เมื่อ 5 ปี ปีที่แล้ว) |
สเปกโดยละเอียด
พารามิเตอร์ทั่วไป เช่น จำนวนเชดเดอร์, ความถี่พื้นฐานและความถี่บูสต์ของ GPU, กระบวนการผลิต, ความเร็วการประมวลผลและการเท็กซ์เจอร์ โปรดทราบว่าการใช้พลังงานของการ์ดจอบางรุ่นอาจเกินกว่า TDP ที่กำหนดไว้ โดยเฉพาะเมื่อทำการโอเวอร์คล็อก
พาธไลน์ / คอร์ CUDA | 1280 | 1024 |
ความเร็วสัญญาณนาฬิกาหลัก | 1088 MHz | 930 MHz |
เพิ่มความเร็วสัญญาณนาฬิกา | 1215 MHz | 1125 MHz |
จำนวนทรานซิสเตอร์ | 7,200 million | 4,700 million |
เทคโนโลยีกระบวนการผลิต | 16 nm | 12 nm |
การใช้พลังงาน (TDP) | 75 Watt | 30 Watt |
อัตราการเติมเท็กซ์เจอร์ | 97.20 | 72.00 |
ประสิทธิภาพการประมวลผลจุดลอยตัว | 3.11 TFLOPS | 2.304 TFLOPS |
ROPs | 48 | 32 |
TMUs | 80 | 64 |
ฟอร์มแฟกเตอร์และความเข้ากันได้
ข้อมูลเกี่ยวกับความเข้ากันได้กับอุปกรณ์คอมพิวเตอร์อื่นๆ มีประโยชน์เมื่อเลือกการกำหนดค่าคอมพิวเตอร์ในอนาคตหรืออัปเกรดคอมพิวเตอร์ที่มีอยู่ สำหรับการ์ดจอเดสก์ท็อป จะรวมถึงอินเทอร์เฟซและบัส (ความเข้ากันได้กับเมนบอร์ด) และขั้วต่อไฟเพิ่มเติม (ความเข้ากันได้กับหน่วยจ่ายไฟ)
ขนาดแล็ปท็อป | large | medium sized |
อินเทอร์เฟซ | MXM-B (3.0) | PCIe 3.0 x16 |
ขั้วต่อพลังงานเสริม | ไม่มีข้อมูล | None |
ความจุและประเภทของ VRAM
พารามิเตอร์ของ VRAM ที่ติดตั้ง: ประเภท, ขนาด, บัส, ความถี่ และแบนด์วิดท์ที่ได้ GPU แบบรวมไม่มี VRAM เฉพาะ และใช้ส่วนแบ่งของ RAM ระบบแทน
ประเภทหน่วยความจำ | GDDR5 | GDDR5 |
จำนวน RAM สูงสุด | 6 จีบี | 4 จีบี |
ความกว้างบัสหน่วยความจำ | 192 Bit | 128 Bit |
ความเร็วของนาฬิกาหน่วยความจำ | 1753 MHz | 1751 MHz |
168 จีบี/s | 112.1 จีบี/s | |
หน่วยความจำที่ใช้ร่วมกัน | - | - |
การเชื่อมต่อและเอาต์พุต
ประเภทและจำนวนของตัวเชื่อมต่อวิดีโอที่มีใน GPU ที่รีวิว โดยทั่วไป ข้อมูลในส่วนนี้จะแม่นยำเฉพาะสำหรับการ์ดเดสก์ท็อปแบบอ้างอิง (หรือที่เรียกว่า Founders Edition สำหรับชิป NVIDIA) ผู้ผลิต OEM อาจเปลี่ยนแปลงจำนวนและประเภทของพอร์ตเอาต์พุต ในขณะที่สำหรับการ์ดโน้ตบุ๊ก ความพร้อมใช้งานของพอร์ตวิดีโอบางประเภทขึ้นอยู่กับรุ่นของแล็ปท็อปมากกว่าตัวการ์ดเอง
ขั้วต่อจอแสดงผล | No outputs | No outputs |
Display Port | 1.4 | ไม่มีข้อมูล |
เทคโนโลยีที่รองรับ
โซลูชันทางเทคโนโลยีที่รองรับ ข้อมูลนี้จะมีประโยชน์หากคุณต้องการเทคโนโลยีเฉพาะสำหรับการใช้งานของคุณ
Optimus | + | - |
3D Stereo | + | ไม่มีข้อมูล |
Mosaic | + | ไม่มีข้อมูล |
nView Display Management | + | ไม่มีข้อมูล |
Optimus | + | ไม่มีข้อมูล |
ความเข้ากันได้ของ API และ SDK
รายการ API สำหรับการประมวลผล 3D และการประมวลผลทั่วไปที่รองรับ รวมถึงเวอร์ชันเฉพาะ
DirectX | 12 | 12 (12_1) |
รุ่นเชดเดอร์ | 6.4 | 6.5 |
OpenGL | 4.5 | 4.6 |
OpenCL | 1.2 | 1.2 |
Vulkan | 1.2.131 | 1.2.140 |
CUDA | 6.1 | 7.5 |
ประสิทธิภาพการทดสอบแบบสังเคราะห์
การเปรียบเทียบผลการทดสอบที่ไม่เกี่ยวกับเกม โดยคะแนนรวมวัดบนมาตราส่วน 0-100 คะแนน
คะแนนรวมของการทดสอบแบบสังเคราะห์
นี่คือคะแนนการทดสอบแบบรวมของเรา
Passmark
นี่คือการทดสอบ GPU ที่พบได้บ่อยที่สุด โดยจะประเมินการ์ดจอภายใต้ภาระงานหลากหลายประเภท โดยให้การทดสอบแยกต่างหาก 4 ครั้งสำหรับ Direct3D เวอร์ชัน 9, 10, 11 และ 12 (เวอร์ชันสุดท้ายใช้ความละเอียด 4K หากทำได้) รวมถึงการทดสอบเพิ่มเติมที่ใช้คุณสมบัติ DirectCompute
3DMark 11 Performance GPU
3DMark 11 เป็นการทดสอบ DirectX 11 เก่าโดย Futuremark ซึ่งประกอบไปด้วย 4 การทดสอบจาก 2 ฉาก: ฉากแรกแสดงการสำรวจซากเรือจมใต้น้ำโดยเรือดำน้ำหลายลำ อีกฉากหนึ่งแสดงวัดร้างลึกเข้าไปในป่าทึบ การทดสอบทั้งหมดใช้แสงวอลุ่ม (Volumetric Lighting) และ Tessellation อย่างหนัก แม้จะใช้ความละเอียด 1280x720 แต่ก็ยังค่อนข้างกินทรัพยากรฮาร์ดแวร์ ยกเลิกไปในเดือนมกราคม 2020 และถูกแทนที่โดย Time Spy
3DMark Vantage Performance
3DMark Vantage เป็นการทดสอบ DirectX 10 เก่าที่ใช้ความละเอียด 1280x1024 โดยมีฉากหลัก 2 ฉาก: ฉากแรกแสดงเด็กผู้หญิงคนหนึ่งหนีออกจากฐานทัพในถ้ำกลางทะเล และอีกฉากหนึ่งแสดงยานอวกาศบุกโจมตีดาวเคราะห์ที่ไร้การป้องกัน ยกเลิกไปในเดือนเมษายน 2017 และแนะนำให้ใช้การทดสอบ Time Spy แทน
3DMark Fire Strike Graphics
Fire Strike เป็นการทดสอบ DirectX 11 สำหรับเกมพีซี ประกอบด้วยการทดสอบ 2 ฉากที่แสดงการต่อสู้ระหว่างมนุษย์และสิ่งมีชีวิตที่ทำจากลาวา ใช้ความละเอียด 1920x1080 และสามารถแสดงกราฟิกที่สมจริง กินทรัพยากรฮาร์ดแวร์สูง
3DMark Cloud Gate GPU
Cloud Gate เป็นการทดสอบ DirectX 11 ระดับ 10 ที่ล้าสมัย ซึ่งเคยใช้สำหรับพีซีตามบ้านและแล็ปท็อปพื้นฐาน แสดงฉากการปล่อยยานอวกาศผ่านอุปกรณ์เทเลพอร์ตอวกาศประหลาด ด้วยความละเอียด 1280x720 เช่นเดียวกับ Ice Storm Benchmark ถูกยกเลิกในเดือนมกราคม 2020 และถูกแทนที่โดย 3DMark Night Raid
3DMark Ice Storm GPU
Ice Storm Graphics เป็นการทดสอบล้าสมัยในชุดการทดสอบ 3DMark ซึ่งเคยใช้วัดประสิทธิภาพของแล็ปท็อประดับเริ่มต้นและแท็บเล็ต Windows ใช้คุณสมบัติของ DirectX 11 ระดับ 9 ในการแสดงฉากต่อสู้ระหว่างยานอวกาศสองกองใกล้กับดาวเคราะห์น้ำแข็งที่ความละเอียด 1280x720 ยกเลิกไปในเดือนมกราคม 2020 และถูกแทนที่โดย 3DMark Night Raid
3DMark Time Spy Graphics
ประสิทธิภาพในการเล่นเกม
มาดูกันว่าการ์ดจอที่นำมาเปรียบเทียบเหมาะสำหรับการเล่นเกมมากน้อยแค่ไหน โดยผลการทดสอบเกมเฉพาะจะวัดเป็นเฟรมต่อวินาที (FPS)
ค่า FPS เฉลี่ยจากเกมพีซีทั้งหมด
นี่คือค่าเฉลี่ยเฟรมต่อวินาทีจากเกมยอดนิยมหลากหลายเกมในหลายความละเอียด:
Full HD | 64
+6.7%
| 60
−6.7%
|
1440p | 30−35
+0%
| 30
+0%
|
4K | 28
+55.6%
| 18
−55.6%
|
ประสิทธิภาพ FPS ในเกมยอดนิยม
Full HD
Low Preset
Atomic Heart | 40−45
+5.1%
|
35−40
−5.1%
|
Counter-Strike 2 | 27−30
+3.6%
|
27−30
−3.6%
|
Cyberpunk 2077 | 30−35
+3.1%
|
30−35
−3.1%
|
Full HD
Medium Preset
Atomic Heart | 40−45
+5.1%
|
35−40
−5.1%
|
Battlefield 5 | 65−70
+6.3%
|
64
−6.3%
|
Counter-Strike 2 | 27−30
+3.6%
|
27−30
−3.6%
|
Cyberpunk 2077 | 30−35
+3.1%
|
30−35
−3.1%
|
Far Cry 5 | 50−55
+42.1%
|
38
−42.1%
|
Fortnite | 85−90
−56.8%
|
138
+56.8%
|
Forza Horizon 4 | 65−70
−12.1%
|
74
+12.1%
|
Forza Horizon 5 | 40−45
+4.9%
|
40−45
−4.9%
|
PLAYERUNKNOWN'S BATTLEGROUNDS | 55−60
−46.6%
|
85
+46.6%
|
Valorant | 120−130
+3.3%
|
120−130
−3.3%
|
Full HD
High Preset
Atomic Heart | 40−45
+5.1%
|
35−40
−5.1%
|
Battlefield 5 | 65−70
+25.9%
|
54
−25.9%
|
Counter-Strike 2 | 27−30
+3.6%
|
27−30
−3.6%
|
Counter-Strike: Global Offensive | 200−210
+23.4%
|
167
−23.4%
|
Cyberpunk 2077 | 30−35
+3.1%
|
30−35
−3.1%
|
Dota 2 | 95−100
+3.2%
|
94
−3.2%
|
Far Cry 5 | 50−55
+54.3%
|
35
−54.3%
|
Fortnite | 85−90
+10%
|
80
−10%
|
Forza Horizon 4 | 65−70
−4.5%
|
69
+4.5%
|
Forza Horizon 5 | 40−45
+4.9%
|
40−45
−4.9%
|
Grand Theft Auto V | 60−65
+7.1%
|
56
−7.1%
|
Metro Exodus | 30−35
+17.9%
|
28
−17.9%
|
PLAYERUNKNOWN'S BATTLEGROUNDS | 55−60
−22.4%
|
71
+22.4%
|
The Witcher 3: Wild Hunt | 63
+18.9%
|
53
−18.9%
|
Valorant | 120−130
+3.3%
|
120−130
−3.3%
|
Full HD
Ultra Preset
Battlefield 5 | 65−70
+38.8%
|
49
−38.8%
|
Counter-Strike 2 | 27−30
+3.6%
|
27−30
−3.6%
|
Cyberpunk 2077 | 30−35
+3.1%
|
30−35
−3.1%
|
Dota 2 | 95−100
+10.2%
|
88
−10.2%
|
Far Cry 5 | 50−55
+63.6%
|
33
−63.6%
|
Forza Horizon 4 | 65−70
+20%
|
55
−20%
|
Forza Horizon 5 | 40−45
+4.9%
|
40−45
−4.9%
|
PLAYERUNKNOWN'S BATTLEGROUNDS | 55−60
+9.4%
|
53
−9.4%
|
The Witcher 3: Wild Hunt | 33
+10%
|
30
−10%
|
Valorant | 120−130
+3.3%
|
120−130
−3.3%
|
Full HD
Epic Preset
Fortnite | 85−90
+49.2%
|
59
−49.2%
|
1440p
High Preset
Counter-Strike 2 | 18−20
+12.5%
|
16−18
−12.5%
|
Counter-Strike: Global Offensive | 110−120
+4.5%
|
110−120
−4.5%
|
Grand Theft Auto V | 24−27
+4%
|
24−27
−4%
|
Metro Exodus | 20−22
+25%
|
16
−25%
|
PLAYERUNKNOWN'S BATTLEGROUNDS | 150−160
+4.7%
|
150−160
−4.7%
|
Valorant | 150−160
+3.2%
|
150−160
−3.2%
|
1440p
Ultra Preset
Battlefield 5 | 45−50
+25%
|
36
−25%
|
Cyberpunk 2077 | 14−16
+0%
|
14−16
+0%
|
Far Cry 5 | 35−40
+6.1%
|
30−35
−6.1%
|
Forza Horizon 4 | 35−40
+5.4%
|
35−40
−5.4%
|
Forza Horizon 5 | 27−30
+7.4%
|
27−30
−7.4%
|
The Witcher 3: Wild Hunt | 24−27
+4.2%
|
24−27
−4.2%
|
1440p
Epic Preset
Fortnite | 35−40
−2.9%
|
36
+2.9%
|
4K
High Preset
Atomic Heart | 12−14
+8.3%
|
12−14
−8.3%
|
Counter-Strike 2 | 7−8
+0%
|
7−8
+0%
|
Grand Theft Auto V | 27−30
+3.6%
|
27−30
−3.6%
|
Metro Exodus | 12−14
+20%
|
10
−20%
|
The Witcher 3: Wild Hunt | 22
+22.2%
|
18
−22.2%
|
Valorant | 85−90
+6%
|
80−85
−6%
|
4K
Ultra Preset
Battlefield 5 | 21−24
+21.1%
|
19
−21.1%
|
Counter-Strike 2 | 7−8
+0%
|
7−8
+0%
|
Cyberpunk 2077 | 6−7
+0%
|
6−7
+0%
|
Dota 2 | 55−60
+3.7%
|
50−55
−3.7%
|
Far Cry 5 | 16−18
+6.3%
|
16−18
−6.3%
|
Forza Horizon 4 | 27−30
+7.7%
|
24−27
−7.7%
|
Forza Horizon 5 | 14−16
+7.7%
|
12−14
−7.7%
|
PLAYERUNKNOWN'S BATTLEGROUNDS | 14−16
−13.3%
|
17
+13.3%
|
4K
Epic Preset
Fortnite | 16−18
+45.5%
|
11
−45.5%
|
1440p
Ultra Preset
Counter-Strike 2 | 18−20
+0%
|
18−20
+0%
|
นี่คือวิธีที่ P3000 มือถือ และ GTX 1650 Max-Q แข่งขันกันในเกมยอดนิยม:
- P3000 มือถือ เร็วกว่า 7% ในความละเอียด 1080p
- เสมอกันในความละเอียด 1440p
- P3000 มือถือ เร็วกว่า 56% ในความละเอียด 4K
นี่คือช่วงความแตกต่างของประสิทธิภาพที่สังเกตได้จากเกมยอดนิยม:
- ในเกม Far Cry 5 ด้วยความละเอียด 1080p และการตั้งค่า Ultra Preset อุปกรณ์ P3000 มือถือ เร็วกว่า 64%
- ในเกม Fortnite ด้วยความละเอียด 1080p และการตั้งค่า Medium Preset อุปกรณ์ GTX 1650 Max-Q เร็วกว่า 57%
โดยรวมแล้ว ในเกมยอดนิยม:
- P3000 มือถือ เหนือกว่าใน 55การทดสอบ (82%)
- GTX 1650 Max-Q เหนือกว่าใน 7การทดสอบ (10%)
- เสมอกันใน 5การทดสอบ (7%)
สรุปข้อดีและข้อเสีย
คะแนนประสิทธิภาพ | 16.85 | 16.13 |
ความใหม่ล่าสุด | 11 มกราคม 2017 | 23 เมษายน 2019 |
จำนวน RAM สูงสุด | 6 จีบี | 4 จีบี |
การผลิตชิปด้วยลิทอกราฟี | 16 nm | 12 nm |
การใช้พลังงาน (TDP) | 75 วัตต์ | 30 วัตต์ |
P3000 มือถือ มีข้อได้เปรียบ มีคะแนนประสิทธิภาพรวมสูงกว่าถึง 4.5% และ
ในทางกลับกัน GTX 1650 Max-Q มีข้อได้เปรียบ ได้เปรียบด้านอายุการเปิดตัวอยู่ที่ 2 ปี และมีกระบวนการลิทอกราฟีที่ก้าวหน้ากว่าถึง 33.3%และใช้พลังงานน้อยกว่าถึง 150%
ด้วยความแตกต่างของประสิทธิภาพที่น้อยมาก จึงไม่สามารถตัดสินผู้ชนะระหว่าง Quadro P3000 มือถือ และ GeForce GTX 1650 Max-Q ได้อย่างชัดเจน
โปรดทราบว่า Quadro P3000 มือถือ เป็นการ์ดจอเวิร์กสเตชันแบบพกพา ในขณะที่ GeForce GTX 1650 Max-Q เป็นการ์ดจอเวิร์กสเตชันแบบพกพาเช่นกัน