Radeon Pro W6800 เทียบกับ RTX A5000 Mobile
คะแนนประสิทธิภาพรวม
เราได้เปรียบเทียบ RTX A5000 Mobile กับ Radeon Pro W6800 รวมถึงสเปกและข้อมูลประสิทธิภาพ
Pro W6800 มีประสิทธิภาพดีกว่า RTX A5000 Mobile อย่างมาก 24% ตามผลการทดสอบแบบรวมของเรา
รายละเอียดหลัก
สถาปัตยกรรม GPU, กลุ่มตลาด, ความคุ้มค่า และพารามิเตอร์ทั่วไปอื่นๆ ที่ถูกนำมาเปรียบเทียบ
| ตำแหน่งในการจัดอันดับประสิทธิภาพ | 128 | 76 |
| จัดอันดับตามความนิยม | ไม่ได้อยู่ใน 100 อันดับแรก | ไม่ได้อยู่ใน 100 อันดับแรก |
| ความคุ้มค่าเมื่อเทียบกับราคา | ไม่มีข้อมูล | 11.09 |
| ประสิทธิภาพการใช้พลังงาน | 19.80 | 14.78 |
| สถาปัตยกรรม | Ampere (2020−2025) | RDNA 2.0 (2020−2025) |
| ชื่อรหัส GPU | GA104 | Navi 21 |
| ประเภทตลาด | เวิร์กสเตชันแบบพกพา | เวิร์กสเตชัน |
| วันที่วางจำหน่าย | 12 เมษายน 2021 (เมื่อ 4 ปี ปีที่แล้ว) | 8 มิถุนายน 2021 (เมื่อ 4 ปี ปีที่แล้ว) |
| ราคาเปิดตัว (MSRP) | ไม่มีข้อมูล | $2,249 |
ความคุ้มค่าเมื่อเทียบกับราคา
อัตราส่วนประสิทธิภาพต่อราคา ยิ่งสูงยิ่งดี
กราฟแบบกระจายประสิทธิภาพต่อราคา
สเปกโดยละเอียด
พารามิเตอร์ทั่วไป เช่น จำนวนเชดเดอร์, ความถี่พื้นฐานและความถี่บูสต์ของ GPU, กระบวนการผลิต, ความเร็วการประมวลผลและการเท็กซ์เจอร์ โปรดทราบว่าการใช้พลังงานของการ์ดจอบางรุ่นอาจเกินกว่า TDP ที่กำหนดไว้ โดยเฉพาะเมื่อทำการโอเวอร์คล็อก
| พาธไลน์ / คอร์ CUDA | 6144 | 3840 |
| ความเร็วสัญญาณนาฬิกาหลัก | 900 MHz | 2075 MHz |
| เพิ่มความเร็วสัญญาณนาฬิกา | 1575 MHz | 2320 MHz |
| จำนวนทรานซิสเตอร์ | 17,400 million | 26,800 million |
| เทคโนโลยีกระบวนการผลิต | 8 nm | 7 nm |
| การใช้พลังงาน (TDP) | 150 Watt | 250 Watt |
| อัตราการเติมเท็กซ์เจอร์ | 302.4 | 556.8 |
| ประสิทธิภาพการประมวลผลจุดลอยตัว | 19.35 TFLOPS | 17.82 TFLOPS |
| ROPs | 96 | 96 |
| TMUs | 192 | 240 |
| Tensor Cores | 192 | ไม่มีข้อมูล |
| Ray Tracing Cores | 48 | 60 |
| L0 Cache | ไม่มีข้อมูล | 960 เคบี |
| L1 Cache | 6 เอ็มบี | 768 เคบี |
| L2 Cache | 4 เอ็มบี | 4 เอ็มบี |
| L3 Cache | ไม่มีข้อมูล | 128 เอ็มบี |
ฟอร์มแฟกเตอร์และความเข้ากันได้
ข้อมูลเกี่ยวกับความเข้ากันได้กับอุปกรณ์คอมพิวเตอร์อื่นๆ มีประโยชน์เมื่อเลือกการกำหนดค่าคอมพิวเตอร์ในอนาคตหรืออัปเกรดคอมพิวเตอร์ที่มีอยู่ สำหรับการ์ดจอเดสก์ท็อป จะรวมถึงอินเทอร์เฟซและบัส (ความเข้ากันได้กับเมนบอร์ด) และขั้วต่อไฟเพิ่มเติม (ความเข้ากันได้กับหน่วยจ่ายไฟ)
| ขนาดแล็ปท็อป | large | ไม่มีข้อมูล |
| อินเทอร์เฟซ | PCIe 4.0 x16 | PCIe 4.0 x16 |
| ความยาว | ไม่มีข้อมูล | 267 mm |
| ความกว้าง | ไม่มีข้อมูล | 2-slot |
| ขั้วต่อพลังงานเสริม | None | 1x 6-pin + 1x 8-pin |
ความจุและประเภทของ VRAM
พารามิเตอร์ของ VRAM ที่ติดตั้ง: ประเภท, ขนาด, บัส, ความถี่ และแบนด์วิดท์ที่ได้ GPU แบบรวมไม่มี VRAM เฉพาะ และใช้ส่วนแบ่งของ RAM ระบบแทน
| ประเภทหน่วยความจำ | GDDR6 | GDDR6 |
| จำนวน RAM สูงสุด | 16 จีบี | 32 จีบี |
| ความกว้างบัสหน่วยความจำ | 256 Bit | 256 Bit |
| ความเร็วของนาฬิกาหน่วยความจำ | 1750 MHz | 2000 MHz |
| 448.0 จีบี/s | 512.0 จีบี/s | |
| หน่วยความจำที่ใช้ร่วมกัน | - | - |
| Resizable BAR | + | + |
การเชื่อมต่อและเอาต์พุต
ประเภทและจำนวนของตัวเชื่อมต่อวิดีโอที่มีใน GPU ที่รีวิว โดยทั่วไป ข้อมูลในส่วนนี้จะแม่นยำเฉพาะสำหรับการ์ดเดสก์ท็อปแบบอ้างอิง (หรือที่เรียกว่า Founders Edition สำหรับชิป NVIDIA) ผู้ผลิต OEM อาจเปลี่ยนแปลงจำนวนและประเภทของพอร์ตเอาต์พุต ในขณะที่สำหรับการ์ดโน้ตบุ๊ก ความพร้อมใช้งานของพอร์ตวิดีโอบางประเภทขึ้นอยู่กับรุ่นของแล็ปท็อปมากกว่าตัวการ์ดเอง
| ขั้วต่อจอแสดงผล | Portable Device Dependent | 6x mini-DisplayPort |
ความเข้ากันได้ของ API และ SDK
รายการ API สำหรับการประมวลผล 3D และการประมวลผลทั่วไปที่รองรับ รวมถึงเวอร์ชันเฉพาะ
| DirectX | 12 Ultimate (12_2) | 12 Ultimate (12_2) |
| รุ่นเชดเดอร์ | 6.7 | 6.5 |
| OpenGL | 4.6 | 4.6 |
| OpenCL | 3.0 | 2.1 |
| Vulkan | 1.3 | 1.2 |
| CUDA | 8.6 | - |
| DLSS | + | - |
ประสิทธิภาพการทดสอบแบบสังเคราะห์
การเปรียบเทียบผลการทดสอบที่ไม่เกี่ยวกับเกม โดยคะแนนรวมวัดบนมาตราส่วน 0-100 คะแนน
คะแนนรวมของการทดสอบแบบสังเคราะห์
นี่คือคะแนนการทดสอบแบบรวมของเรา
Passmark
นี่คือการทดสอบ GPU ที่พบได้บ่อยที่สุด โดยจะประเมินการ์ดจอภายใต้ภาระงานหลากหลายประเภท โดยให้การทดสอบแยกต่างหาก 4 ครั้งสำหรับ Direct3D เวอร์ชัน 9, 10, 11 และ 12 (เวอร์ชันสุดท้ายใช้ความละเอียด 4K หากทำได้) รวมถึงการทดสอบเพิ่มเติมที่ใช้คุณสมบัติ DirectCompute
3DMark 11 Performance GPU
3DMark 11 เป็นการทดสอบ DirectX 11 เก่าโดย Futuremark ซึ่งประกอบไปด้วย 4 การทดสอบจาก 2 ฉาก: ฉากแรกแสดงการสำรวจซากเรือจมใต้น้ำโดยเรือดำน้ำหลายลำ อีกฉากหนึ่งแสดงวัดร้างลึกเข้าไปในป่าทึบ การทดสอบทั้งหมดใช้แสงวอลุ่ม (Volumetric Lighting) และ Tessellation อย่างหนัก แม้จะใช้ความละเอียด 1280x720 แต่ก็ยังค่อนข้างกินทรัพยากรฮาร์ดแวร์ ยกเลิกไปในเดือนมกราคม 2020 และถูกแทนที่โดย Time Spy
3DMark Fire Strike Graphics
Fire Strike เป็นการทดสอบ DirectX 11 สำหรับเกมพีซี ประกอบด้วยการทดสอบ 2 ฉากที่แสดงการต่อสู้ระหว่างมนุษย์และสิ่งมีชีวิตที่ทำจากลาวา ใช้ความละเอียด 1920x1080 และสามารถแสดงกราฟิกที่สมจริง กินทรัพยากรฮาร์ดแวร์สูง
3DMark Cloud Gate GPU
Cloud Gate เป็นการทดสอบ DirectX 11 ระดับ 10 ที่ล้าสมัย ซึ่งเคยใช้สำหรับพีซีตามบ้านและแล็ปท็อปพื้นฐาน แสดงฉากการปล่อยยานอวกาศผ่านอุปกรณ์เทเลพอร์ตอวกาศประหลาด ด้วยความละเอียด 1280x720 เช่นเดียวกับ Ice Storm Benchmark ถูกยกเลิกในเดือนมกราคม 2020 และถูกแทนที่โดย 3DMark Night Raid
ประสิทธิภาพในการเล่นเกม
มาดูกันว่าการ์ดจอที่นำมาเปรียบเทียบเหมาะสำหรับการเล่นเกมมากน้อยแค่ไหน โดยผลการทดสอบเกมเฉพาะจะวัดเป็นเฟรมต่อวินาที (FPS)
ค่า FPS เฉลี่ยจากเกมพีซีทั้งหมด
นี่คือค่าเฉลี่ยเฟรมต่อวินาทีจากเกมยอดนิยมหลากหลายเกมในหลายความละเอียด:
| Full HD | 106
−29.2%
| 137
+29.2%
|
| 1440p | 68
−70.6%
| 116
+70.6%
|
| 4K | 48
−75%
| 84
+75%
|
ต้นทุนต่อเฟรม, $
| 1080p | ไม่มีข้อมูล | 16.42 |
| 1440p | ไม่มีข้อมูล | 19.39 |
| 4K | ไม่มีข้อมูล | 26.77 |
ประสิทธิภาพ FPS ในเกมยอดนิยม
Full HD
Low
| Counter-Strike 2 | 210−220
−19%
|
250−260
+19%
|
| Cyberpunk 2077 | 90−95
−28.3%
|
110−120
+28.3%
|
| Hogwarts Legacy | 90−95
−29.3%
|
110−120
+29.3%
|
Full HD
Medium
| Battlefield 5 | 130−140
−12.8%
|
150−160
+12.8%
|
| Counter-Strike 2 | 210−220
−19%
|
250−260
+19%
|
| Cyberpunk 2077 | 90−95
−28.3%
|
110−120
+28.3%
|
| Far Cry 5 | 93
+32.9%
|
70
−32.9%
|
| Fortnite | 160−170
−24.9%
|
210−220
+24.9%
|
| Forza Horizon 4 | 150−160
−24.5%
|
180−190
+24.5%
|
| Forza Horizon 5 | 120−130
−22.6%
|
150−160
+22.6%
|
| Hogwarts Legacy | 90−95
−29.3%
|
110−120
+29.3%
|
| PLAYERUNKNOWN'S BATTLEGROUNDS | 150−160
−12.3%
|
170−180
+12.3%
|
| Valorant | 220−230
−18%
|
260−270
+18%
|
Full HD
High
| Battlefield 5 | 130−140
−12.8%
|
150−160
+12.8%
|
| Counter-Strike 2 | 210−220
−19%
|
250−260
+19%
|
| Counter-Strike: Global Offensive | 270−280
+0%
|
270−280
+0%
|
| Cyberpunk 2077 | 90−95
−28.3%
|
110−120
+28.3%
|
| Dota 2 | 132
+33.3%
|
99
−33.3%
|
| Far Cry 5 | 90
+38.5%
|
65
−38.5%
|
| Fortnite | 160−170
−24.9%
|
210−220
+24.9%
|
| Forza Horizon 4 | 150−160
−24.5%
|
180−190
+24.5%
|
| Forza Horizon 5 | 120−130
−22.6%
|
150−160
+22.6%
|
| Grand Theft Auto V | 122
+0.8%
|
121
−0.8%
|
| Hogwarts Legacy | 90−95
−29.3%
|
110−120
+29.3%
|
| Metro Exodus | 80
−100%
|
160
+100%
|
| PLAYERUNKNOWN'S BATTLEGROUNDS | 150−160
−12.3%
|
170−180
+12.3%
|
| The Witcher 3: Wild Hunt | 150
−32.7%
|
199
+32.7%
|
| Valorant | 220−230
−18%
|
260−270
+18%
|
Full HD
Ultra
| Battlefield 5 | 130−140
−12.8%
|
150−160
+12.8%
|
| Cyberpunk 2077 | 90−95
−28.3%
|
110−120
+28.3%
|
| Dota 2 | 124
+44.2%
|
86
−44.2%
|
| Far Cry 5 | 85
+37.1%
|
62
−37.1%
|
| Forza Horizon 4 | 150−160
−24.5%
|
180−190
+24.5%
|
| Hogwarts Legacy | 90−95
−29.3%
|
110−120
+29.3%
|
| PLAYERUNKNOWN'S BATTLEGROUNDS | 150−160
−12.3%
|
170−180
+12.3%
|
| The Witcher 3: Wild Hunt | 90
−74.4%
|
157
+74.4%
|
| Valorant | 220−230
−18%
|
260−270
+18%
|
Full HD
Epic
| Fortnite | 160−170
−24.9%
|
210−220
+24.9%
|
1440p
High
| Counter-Strike 2 | 95−100
−35.4%
|
130−140
+35.4%
|
| Counter-Strike: Global Offensive | 270−280
−26.9%
|
300−350
+26.9%
|
| Grand Theft Auto V | 82
−7.3%
|
88
+7.3%
|
| Metro Exodus | 44
−289%
|
171
+289%
|
| PLAYERUNKNOWN'S BATTLEGROUNDS | 170−180
+0%
|
170−180
+0%
|
| Valorant | 250−260
−17%
|
300−350
+17%
|
1440p
Ultra
| Battlefield 5 | 100−105
−20%
|
120−130
+20%
|
| Cyberpunk 2077 | 45−50
−34.8%
|
60−65
+34.8%
|
| Far Cry 5 | 79
+23.4%
|
64
−23.4%
|
| Forza Horizon 4 | 110−120
−33%
|
140−150
+33%
|
| Hogwarts Legacy | 45−50
−30.4%
|
60−65
+30.4%
|
| The Witcher 3: Wild Hunt | 75−80
−34.7%
|
100−110
+34.7%
|
1440p
Epic
| Fortnite | 100−110
−29.8%
|
130−140
+29.8%
|
4K
High
| Counter-Strike 2 | 45−50
−33.3%
|
60−65
+33.3%
|
| Grand Theft Auto V | 76
−64.5%
|
125
+64.5%
|
| Hogwarts Legacy | 24−27
−28%
|
30−35
+28%
|
| Metro Exodus | 26
−112%
|
55
+112%
|
| The Witcher 3: Wild Hunt | 58
−70.7%
|
99
+70.7%
|
| Valorant | 230−240
−20.5%
|
280−290
+20.5%
|
4K
Ultra
| Battlefield 5 | 60−65
−27%
|
80−85
+27%
|
| Counter-Strike 2 | 45−50
−33.3%
|
60−65
+33.3%
|
| Cyberpunk 2077 | 21−24
−38.1%
|
27−30
+38.1%
|
| Dota 2 | 107
+13.8%
|
94
−13.8%
|
| Far Cry 5 | 44
−36.4%
|
60
+36.4%
|
| Forza Horizon 4 | 75−80
−37.3%
|
100−110
+37.3%
|
| Hogwarts Legacy | 24−27
−28%
|
30−35
+28%
|
| PLAYERUNKNOWN'S BATTLEGROUNDS | 50−55
−47.2%
|
75−80
+47.2%
|
4K
Epic
| Fortnite | 50−55
−37.3%
|
70−75
+37.3%
|
นี่คือวิธีที่ RTX A5000 Mobile และ Pro W6800 แข่งขันกันในเกมยอดนิยม:
- Pro W6800 เร็วกว่า 29% ในความละเอียด 1080p
- Pro W6800 เร็วกว่า 71% ในความละเอียด 1440p
- Pro W6800 เร็วกว่า 75% ในความละเอียด 4K
นี่คือช่วงความแตกต่างของประสิทธิภาพที่สังเกตได้จากเกมยอดนิยม:
- ในเกม Dota 2 ด้วยความละเอียด 1080p และการตั้งค่า Ultra Preset อุปกรณ์ RTX A5000 Mobile เร็วกว่า 44%
- ในเกม Metro Exodus ด้วยความละเอียด 1440p และการตั้งค่า High Preset อุปกรณ์ Pro W6800 เร็วกว่า 289%
โดยรวมแล้ว ในเกมยอดนิยม:
- RTX A5000 Mobile เหนือกว่าใน 8การทดสอบ (12%)
- Pro W6800 เหนือกว่าใน 56การทดสอบ (85%)
- เสมอกันใน 2การทดสอบ (3%)
สรุปข้อดีและข้อเสีย
| คะแนนประสิทธิภาพ | 36.79 | 45.78 |
| ความใหม่ล่าสุด | 12 เมษายน 2021 | 8 มิถุนายน 2021 |
| จำนวน RAM สูงสุด | 16 จีบี | 32 จีบี |
| การผลิตชิปด้วยลิทอกราฟี | 8 nm | 7 nm |
| การใช้พลังงาน (TDP) | 150 วัตต์ | 250 วัตต์ |
RTX A5000 Mobile มีข้อได้เปรียบ ใช้พลังงานน้อยกว่าถึง 66.7%
ในทางกลับกัน Pro W6800 มีข้อได้เปรียบ มีคะแนนประสิทธิภาพรวมสูงกว่าถึง 24.4% และได้เปรียบด้านอายุการเปิดตัวอยู่ที่ 1 เดือนและและมีกระบวนการลิทอกราฟีที่ก้าวหน้ากว่าถึง 14.3%
Radeon Pro W6800 เป็นตัวเลือกที่เราแนะนำ เนื่องจากมีประสิทธิภาพเหนือกว่า RTX A5000 Mobile ในการทดสอบประสิทธิภาพ
โปรดทราบว่า RTX A5000 Mobile เป็นการ์ดจอเวิร์กสเตชันแบบพกพา ในขณะที่ Radeon Pro W6800 เป็นการ์ดจอเวิร์กสเตชัน
