Radeon RX Vega 9 เทียบกับ GeForce GTX 1650
คะแนนประสิทธิภาพรวม
เราได้เปรียบเทียบ GeForce GTX 1650 กับ Radeon RX Vega 9 รวมถึงสเปกและข้อมูลประสิทธิภาพ
GTX 1650 มีประสิทธิภาพดีกว่า RX Vega 9 อย่างมหาศาลถึง 266% ตามผลการทดสอบแบบรวมของเรา
รายละเอียดหลัก
สถาปัตยกรรม GPU, กลุ่มตลาด, ความคุ้มค่า และพารามิเตอร์ทั่วไปอื่นๆ ที่ถูกนำมาเปรียบเทียบ
ตำแหน่งในการจัดอันดับประสิทธิภาพ | 279 | 615 |
จัดอันดับตามความนิยม | 3 | ไม่ได้อยู่ใน 100 อันดับแรก |
ความคุ้มค่าเมื่อเทียบกับราคา | 37.69 | ไม่มีข้อมูล |
ประสิทธิภาพการใช้พลังงาน | 18.80 | 25.65 |
สถาปัตยกรรม | Turing (2018−2022) | Vega (2017−2020) |
ชื่อรหัส GPU | TU117 | Vega Raven Ridge |
ประเภทตลาด | เดสก์ท็อป | แล็ปท็อป |
วันที่วางจำหน่าย | 23 เมษายน 2019 (เมื่อ 5 ปี ปีที่แล้ว) | 26 ตุลาคม 2017 (เมื่อ 7 ปี ปีที่แล้ว) |
ราคาเปิดตัว (MSRP) | $149 | ไม่มีข้อมูล |
ความคุ้มค่าเมื่อเทียบกับราคา
อัตราส่วนประสิทธิภาพต่อราคา ยิ่งสูงยิ่งดี
สเปกโดยละเอียด
พารามิเตอร์ทั่วไป เช่น จำนวนเชดเดอร์, ความถี่พื้นฐานและความถี่บูสต์ของ GPU, กระบวนการผลิต, ความเร็วการประมวลผลและการเท็กซ์เจอร์ โปรดทราบว่าการใช้พลังงานของการ์ดจอบางรุ่นอาจเกินกว่า TDP ที่กำหนดไว้ โดยเฉพาะเมื่อทำการโอเวอร์คล็อก
พาธไลน์ / คอร์ CUDA | 896 | 576 |
ความเร็วสัญญาณนาฬิกาหลัก | 1485 MHz | ไม่มีข้อมูล |
เพิ่มความเร็วสัญญาณนาฬิกา | 1665 MHz | 1300 MHz |
จำนวนทรานซิสเตอร์ | 4,700 million | ไม่มีข้อมูล |
เทคโนโลยีกระบวนการผลิต | 12 nm | 14 nm |
การใช้พลังงาน (TDP) | 75 Watt | 15 Watt |
อัตราการเติมเท็กซ์เจอร์ | 93.24 | ไม่มีข้อมูล |
ประสิทธิภาพการประมวลผลจุดลอยตัว | 2.984 TFLOPS | ไม่มีข้อมูล |
ROPs | 32 | ไม่มีข้อมูล |
TMUs | 56 | ไม่มีข้อมูล |
ฟอร์มแฟกเตอร์และความเข้ากันได้
ข้อมูลเกี่ยวกับความเข้ากันได้กับอุปกรณ์คอมพิวเตอร์อื่นๆ มีประโยชน์เมื่อเลือกการกำหนดค่าคอมพิวเตอร์ในอนาคตหรืออัปเกรดคอมพิวเตอร์ที่มีอยู่ สำหรับการ์ดจอเดสก์ท็อป จะรวมถึงอินเทอร์เฟซและบัส (ความเข้ากันได้กับเมนบอร์ด) และขั้วต่อไฟเพิ่มเติม (ความเข้ากันได้กับหน่วยจ่ายไฟ)
อินเทอร์เฟซ | PCIe 3.0 x16 | ไม่มีข้อมูล |
ความยาว | 229 mm | ไม่มีข้อมูล |
ความกว้าง | 2-slot | ไม่มีข้อมูล |
ขั้วต่อพลังงานเสริม | None | ไม่มีข้อมูล |
ความจุและประเภทของ VRAM
พารามิเตอร์ของ VRAM ที่ติดตั้ง: ประเภท, ขนาด, บัส, ความถี่ และแบนด์วิดท์ที่ได้ GPU แบบรวมไม่มี VRAM เฉพาะ และใช้ส่วนแบ่งของ RAM ระบบแทน
ประเภทหน่วยความจำ | GDDR5 | ไม่มีข้อมูล |
จำนวน RAM สูงสุด | 4 จีบี | ไม่มีข้อมูล |
ความกว้างบัสหน่วยความจำ | 128 Bit | ไม่มีข้อมูล |
ความเร็วของนาฬิกาหน่วยความจำ | 2000 MHz | ไม่มีข้อมูล |
128.0 จีบี/s | ไม่มีข้อมูล | |
หน่วยความจำที่ใช้ร่วมกัน | - | - |
การเชื่อมต่อและเอาต์พุต
ประเภทและจำนวนของตัวเชื่อมต่อวิดีโอที่มีใน GPU ที่รีวิว โดยทั่วไป ข้อมูลในส่วนนี้จะแม่นยำเฉพาะสำหรับการ์ดเดสก์ท็อปแบบอ้างอิง (หรือที่เรียกว่า Founders Edition สำหรับชิป NVIDIA) ผู้ผลิต OEM อาจเปลี่ยนแปลงจำนวนและประเภทของพอร์ตเอาต์พุต ในขณะที่สำหรับการ์ดโน้ตบุ๊ก ความพร้อมใช้งานของพอร์ตวิดีโอบางประเภทขึ้นอยู่กับรุ่นของแล็ปท็อปมากกว่าตัวการ์ดเอง
ขั้วต่อจอแสดงผล | 1x DVI, 1x HDMI, 1x DisplayPort | ไม่มีข้อมูล |
HDMI | + | - |
ความเข้ากันได้ของ API และ SDK
รายการ API สำหรับการประมวลผล 3D และการประมวลผลทั่วไปที่รองรับ รวมถึงเวอร์ชันเฉพาะ
DirectX | 12 (12_1) | 12_1 |
รุ่นเชดเดอร์ | 6.5 | ไม่มีข้อมูล |
OpenGL | 4.6 | ไม่มีข้อมูล |
OpenCL | 1.2 | ไม่มีข้อมูล |
Vulkan | 1.2.131 | - |
CUDA | 7.5 | - |
ประสิทธิภาพการทดสอบแบบสังเคราะห์
การเปรียบเทียบผลการทดสอบที่ไม่เกี่ยวกับเกม โดยคะแนนรวมวัดบนมาตราส่วน 0-100 คะแนน
คะแนนรวมของการทดสอบแบบสังเคราะห์
นี่คือคะแนนการทดสอบแบบรวมของเรา
3DMark 11 Performance GPU
3DMark 11 เป็นการทดสอบ DirectX 11 เก่าโดย Futuremark ซึ่งประกอบไปด้วย 4 การทดสอบจาก 2 ฉาก: ฉากแรกแสดงการสำรวจซากเรือจมใต้น้ำโดยเรือดำน้ำหลายลำ อีกฉากหนึ่งแสดงวัดร้างลึกเข้าไปในป่าทึบ การทดสอบทั้งหมดใช้แสงวอลุ่ม (Volumetric Lighting) และ Tessellation อย่างหนัก แม้จะใช้ความละเอียด 1280x720 แต่ก็ยังค่อนข้างกินทรัพยากรฮาร์ดแวร์ ยกเลิกไปในเดือนมกราคม 2020 และถูกแทนที่โดย Time Spy
3DMark Vantage Performance
3DMark Vantage เป็นการทดสอบ DirectX 10 เก่าที่ใช้ความละเอียด 1280x1024 โดยมีฉากหลัก 2 ฉาก: ฉากแรกแสดงเด็กผู้หญิงคนหนึ่งหนีออกจากฐานทัพในถ้ำกลางทะเล และอีกฉากหนึ่งแสดงยานอวกาศบุกโจมตีดาวเคราะห์ที่ไร้การป้องกัน ยกเลิกไปในเดือนเมษายน 2017 และแนะนำให้ใช้การทดสอบ Time Spy แทน
3DMark Fire Strike Graphics
Fire Strike เป็นการทดสอบ DirectX 11 สำหรับเกมพีซี ประกอบด้วยการทดสอบ 2 ฉากที่แสดงการต่อสู้ระหว่างมนุษย์และสิ่งมีชีวิตที่ทำจากลาวา ใช้ความละเอียด 1920x1080 และสามารถแสดงกราฟิกที่สมจริง กินทรัพยากรฮาร์ดแวร์สูง
3DMark Cloud Gate GPU
Cloud Gate เป็นการทดสอบ DirectX 11 ระดับ 10 ที่ล้าสมัย ซึ่งเคยใช้สำหรับพีซีตามบ้านและแล็ปท็อปพื้นฐาน แสดงฉากการปล่อยยานอวกาศผ่านอุปกรณ์เทเลพอร์ตอวกาศประหลาด ด้วยความละเอียด 1280x720 เช่นเดียวกับ Ice Storm Benchmark ถูกยกเลิกในเดือนมกราคม 2020 และถูกแทนที่โดย 3DMark Night Raid
3DMark Ice Storm GPU
Ice Storm Graphics เป็นการทดสอบล้าสมัยในชุดการทดสอบ 3DMark ซึ่งเคยใช้วัดประสิทธิภาพของแล็ปท็อประดับเริ่มต้นและแท็บเล็ต Windows ใช้คุณสมบัติของ DirectX 11 ระดับ 9 ในการแสดงฉากต่อสู้ระหว่างยานอวกาศสองกองใกล้กับดาวเคราะห์น้ำแข็งที่ความละเอียด 1280x720 ยกเลิกไปในเดือนมกราคม 2020 และถูกแทนที่โดย 3DMark Night Raid
ประสิทธิภาพในการเล่นเกม
มาดูกันว่าการ์ดจอที่นำมาเปรียบเทียบเหมาะสำหรับการเล่นเกมมากน้อยแค่ไหน โดยผลการทดสอบเกมเฉพาะจะวัดเป็นเฟรมต่อวินาที (FPS)
ค่า FPS เฉลี่ยจากเกมพีซีทั้งหมด
นี่คือค่าเฉลี่ยเฟรมต่อวินาทีจากเกมยอดนิยมหลากหลายเกมในหลายความละเอียด:
Full HD | 69
+283%
| 18
−283%
|
1440p | 41
+310%
| 10−12
−310%
|
4K | 25
+317%
| 6−7
−317%
|
ต้นทุนต่อเฟรม, $
1080p | 2.16 | ไม่มีข้อมูล |
1440p | 3.63 | ไม่มีข้อมูล |
4K | 5.96 | ไม่มีข้อมูล |
ประสิทธิภาพ FPS ในเกมยอดนิยม
Full HD
Low Preset
Atomic Heart | 50−55
+292%
|
12−14
−292%
|
Counter-Strike 2 | 35−40
+200%
|
12−14
−200%
|
Cyberpunk 2077 | 40−45
+273%
|
10−12
−273%
|
Full HD
Medium Preset
Atomic Heart | 50−55
+292%
|
12−14
−292%
|
Battlefield 5 | 61
+177%
|
21−24
−177%
|
Counter-Strike 2 | 35−40
+200%
|
12−14
−200%
|
Cyberpunk 2077 | 40−45
+273%
|
10−12
−273%
|
Far Cry 5 | 69
+360%
|
14−16
−360%
|
Fortnite | 211
+859%
|
22
−859%
|
Forza Horizon 4 | 90
+275%
|
24−27
−275%
|
Forza Horizon 5 | 60
+400%
|
12−14
−400%
|
PLAYERUNKNOWN'S BATTLEGROUNDS | 90
+350%
|
20−22
−350%
|
Valorant | 292
+363%
|
60−65
−363%
|
Full HD
High Preset
Atomic Heart | 50−55
+292%
|
12−14
−292%
|
Battlefield 5 | 53
+141%
|
21−24
−141%
|
Counter-Strike 2 | 35−40
+200%
|
12−14
−200%
|
Counter-Strike: Global Offensive | 230−240
+160%
|
85−90
−160%
|
Cyberpunk 2077 | 40−45
+273%
|
10−12
−273%
|
Dota 2 | 97
+120%
|
40−45
−120%
|
Far Cry 5 | 63
+320%
|
14−16
−320%
|
Fortnite | 85
+431%
|
16
−431%
|
Forza Horizon 4 | 83
+246%
|
24−27
−246%
|
Forza Horizon 5 | 50−55
+350%
|
12−14
−350%
|
Grand Theft Auto V | 81
+350%
|
18−20
−350%
|
Metro Exodus | 35
+250%
|
10−11
−250%
|
PLAYERUNKNOWN'S BATTLEGROUNDS | 86
+330%
|
20−22
−330%
|
The Witcher 3: Wild Hunt | 71
+446%
|
13
−446%
|
Valorant | 260
+313%
|
60−65
−313%
|
Full HD
Ultra Preset
Battlefield 5 | 51
+132%
|
21−24
−132%
|
Counter-Strike 2 | 35−40
+200%
|
12−14
−200%
|
Cyberpunk 2077 | 40−45
+273%
|
10−12
−273%
|
Dota 2 | 92
+109%
|
40−45
−109%
|
Far Cry 5 | 59
+293%
|
14−16
−293%
|
Forza Horizon 4 | 65
+171%
|
24−27
−171%
|
Forza Horizon 5 | 41
+242%
|
12−14
−242%
|
PLAYERUNKNOWN'S BATTLEGROUNDS | 66
+230%
|
20−22
−230%
|
The Witcher 3: Wild Hunt | 41
+413%
|
8
−413%
|
Valorant | 70
+11.1%
|
60−65
−11.1%
|
Full HD
Epic Preset
Fortnite | 61
+578%
|
9
−578%
|
1440p
High Preset
Counter-Strike 2 | 21−24
+320%
|
5−6
−320%
|
Counter-Strike: Global Offensive | 130−140
+248%
|
40−45
−248%
|
Grand Theft Auto V | 40
+567%
|
6−7
−567%
|
Metro Exodus | 20
+400%
|
4−5
−400%
|
PLAYERUNKNOWN'S BATTLEGROUNDS | 170−180
+391%
|
35−40
−391%
|
Valorant | 177
+200%
|
55−60
−200%
|
1440p
Ultra Preset
Battlefield 5 | 39
+550%
|
6−7
−550%
|
Cyberpunk 2077 | 18−20
+350%
|
4−5
−350%
|
Far Cry 5 | 40
+300%
|
10−11
−300%
|
Forza Horizon 4 | 46
+283%
|
12−14
−283%
|
Forza Horizon 5 | 35−40
+338%
|
8−9
−338%
|
The Witcher 3: Wild Hunt | 31
+288%
|
8−9
−288%
|
1440p
Epic Preset
Fortnite | 42
+320%
|
10−11
−320%
|
4K
High Preset
Atomic Heart | 14−16
+275%
|
4−5
−275%
|
Counter-Strike 2 | 9−10
+350%
|
2−3
−350%
|
Grand Theft Auto V | 33
+94.1%
|
16−18
−94.1%
|
Metro Exodus | 12
+300%
|
3−4
−300%
|
The Witcher 3: Wild Hunt | 26
+1200%
|
2−3
−1200%
|
Valorant | 83
+219%
|
24−27
−219%
|
4K
Ultra Preset
Battlefield 5 | 21
+600%
|
3−4
−600%
|
Counter-Strike 2 | 9−10
+350%
|
2−3
−350%
|
Cyberpunk 2077 | 8−9
+300%
|
2−3
−300%
|
Dota 2 | 59
+228%
|
18−20
−228%
|
Far Cry 5 | 19
+280%
|
5−6
−280%
|
Forza Horizon 4 | 30
+329%
|
7−8
−329%
|
Forza Horizon 5 | 16−18
+467%
|
3−4
−467%
|
PLAYERUNKNOWN'S BATTLEGROUNDS | 26
+420%
|
5−6
−420%
|
4K
Epic Preset
Fortnite | 11
+120%
|
5−6
−120%
|
1440p
Ultra Preset
Counter-Strike 2 | 7−8
+0%
|
7−8
+0%
|
นี่คือวิธีที่ GTX 1650 และ RX Vega 9 แข่งขันกันในเกมยอดนิยม:
- GTX 1650 เร็วกว่า 283% ในความละเอียด 1080p
- GTX 1650 เร็วกว่า 310% ในความละเอียด 1440p
- GTX 1650 เร็วกว่า 317% ในความละเอียด 4K
นี่คือช่วงความแตกต่างของประสิทธิภาพที่สังเกตได้จากเกมยอดนิยม:
- ในเกม The Witcher 3: Wild Hunt ด้วยความละเอียด 4K และการตั้งค่า High Preset อุปกรณ์ GTX 1650 เร็วกว่า 1200%
โดยรวมแล้ว ในเกมยอดนิยม:
- GTX 1650 เหนือกว่าใน 63การทดสอบ (98%)
- เสมอกันใน 1การทดสอบ (2%)
สรุปข้อดีและข้อเสีย
คะแนนประสิทธิภาพ | 20.23 | 5.52 |
ความใหม่ล่าสุด | 23 เมษายน 2019 | 26 ตุลาคม 2017 |
การผลิตชิปด้วยลิทอกราฟี | 12 nm | 14 nm |
การใช้พลังงาน (TDP) | 75 วัตต์ | 15 วัตต์ |
GTX 1650 มีข้อได้เปรียบ มีคะแนนประสิทธิภาพรวมสูงกว่าถึง 266.5% และได้เปรียบด้านอายุการเปิดตัวอยู่ที่ 1 ปี และมีกระบวนการลิทอกราฟีที่ก้าวหน้ากว่าถึง 16.7%
ในทางกลับกัน RX Vega 9 มีข้อได้เปรียบ ใช้พลังงานน้อยกว่าถึง 400%
GeForce GTX 1650 เป็นตัวเลือกที่เราแนะนำ เนื่องจากมีประสิทธิภาพเหนือกว่า Radeon RX Vega 9 ในการทดสอบประสิทธิภาพ
โปรดทราบว่า GeForce GTX 1650 เป็นการ์ดจอเดสก์ท็อป ในขณะที่ Radeon RX Vega 9 เป็นการ์ดจอโน้ตบุ๊ก