GeForce RTX 3080 เทียบกับ Radeon Pro Vega 56
คะแนนประสิทธิภาพรวม
เราได้เปรียบเทียบ Radeon Pro Vega 56 กับ GeForce RTX 3080 รวมถึงสเปกและข้อมูลประสิทธิภาพ
RTX 3080 มีประสิทธิภาพดีกว่า Pro Vega 56 อย่างมหาศาลถึง 104% ตามผลการทดสอบแบบรวมของเรา
รายละเอียดหลัก
สถาปัตยกรรม GPU, กลุ่มตลาด, ความคุ้มค่า และพารามิเตอร์ทั่วไปอื่นๆ ที่ถูกนำมาเปรียบเทียบ
ตำแหน่งในการจัดอันดับประสิทธิภาพ | 181 | 32 |
จัดอันดับตามความนิยม | ไม่ได้อยู่ใน 100 อันดับแรก | ไม่ได้อยู่ใน 100 อันดับแรก |
ความคุ้มค่าเมื่อเทียบกับราคา | 45.12 | 46.39 |
ประสิทธิภาพการใช้พลังงาน | 10.48 | 14.01 |
สถาปัตยกรรม | GCN 5.0 (2017−2020) | Ampere (2020−2024) |
ชื่อรหัส GPU | Vega 10 | GA102 |
ประเภทตลาด | เวิร์กสเตชันแบบพกพา | เดสก์ท็อป |
วันที่วางจำหน่าย | 14 สิงหาคม 2017 (เมื่อ 7 ปี ปีที่แล้ว) | 1 กันยายน 2020 (เมื่อ 4 ปี ปีที่แล้ว) |
ราคาเปิดตัว (MSRP) | $399 | $699 |
ความคุ้มค่าเมื่อเทียบกับราคา
อัตราส่วนประสิทธิภาพต่อราคา ยิ่งสูงยิ่งดี
RTX 3080 มีความคุ้มค่ามากกว่า Pro Vega 56 อยู่ 3%
สเปกโดยละเอียด
พารามิเตอร์ทั่วไป เช่น จำนวนเชดเดอร์, ความถี่พื้นฐานและความถี่บูสต์ของ GPU, กระบวนการผลิต, ความเร็วการประมวลผลและการเท็กซ์เจอร์ โปรดทราบว่าการใช้พลังงานของการ์ดจอบางรุ่นอาจเกินกว่า TDP ที่กำหนดไว้ โดยเฉพาะเมื่อทำการโอเวอร์คล็อก
พาธไลน์ / คอร์ CUDA | 3584 | 8704 |
ความเร็วสัญญาณนาฬิกาหลัก | 1138 MHz | 1440 MHz |
เพิ่มความเร็วสัญญาณนาฬิกา | 1250 MHz | 1710 MHz |
จำนวนทรานซิสเตอร์ | 12,500 million | 28,300 million |
เทคโนโลยีกระบวนการผลิต | 14 nm | 8 nm |
การใช้พลังงาน (TDP) | 210 Watt | 320 Watt |
อัตราการเติมเท็กซ์เจอร์ | 280.0 | 465.1 |
ประสิทธิภาพการประมวลผลจุดลอยตัว | 8.96 TFLOPS | 29.77 TFLOPS |
ROPs | 64 | 96 |
TMUs | 224 | 272 |
Tensor Cores | ไม่มีข้อมูล | 272 |
Ray Tracing Cores | ไม่มีข้อมูล | 68 |
ฟอร์มแฟกเตอร์และความเข้ากันได้
ข้อมูลเกี่ยวกับความเข้ากันได้กับอุปกรณ์คอมพิวเตอร์อื่นๆ มีประโยชน์เมื่อเลือกการกำหนดค่าคอมพิวเตอร์ในอนาคตหรืออัปเกรดคอมพิวเตอร์ที่มีอยู่ สำหรับการ์ดจอเดสก์ท็อป จะรวมถึงอินเทอร์เฟซและบัส (ความเข้ากันได้กับเมนบอร์ด) และขั้วต่อไฟเพิ่มเติม (ความเข้ากันได้กับหน่วยจ่ายไฟ)
อินเทอร์เฟซ | PCIe 3.0 x16 | PCIe 4.0 x16 |
ความยาว | ไม่มีข้อมูล | 285 mm |
ความกว้าง | ไม่มีข้อมูล | 2-slot |
ขั้วต่อพลังงานเสริม | None | 1x 12-pin |
ความจุและประเภทของ VRAM
พารามิเตอร์ของ VRAM ที่ติดตั้ง: ประเภท, ขนาด, บัส, ความถี่ และแบนด์วิดท์ที่ได้ GPU แบบรวมไม่มี VRAM เฉพาะ และใช้ส่วนแบ่งของ RAM ระบบแทน
ประเภทหน่วยความจำ | HBM2 | GDDR6X |
จำนวน RAM สูงสุด | 8 จีบี | 10 จีบี |
ความกว้างบัสหน่วยความจำ | 2048 Bit | 320 Bit |
ความเร็วของนาฬิกาหน่วยความจำ | 786 MHz | 1188 MHz |
402.4 จีบี/s | 760.3 จีบี/s | |
หน่วยความจำที่ใช้ร่วมกัน | - | - |
Resizable BAR | - | + |
การเชื่อมต่อและเอาต์พุต
ประเภทและจำนวนของตัวเชื่อมต่อวิดีโอที่มีใน GPU ที่รีวิว โดยทั่วไป ข้อมูลในส่วนนี้จะแม่นยำเฉพาะสำหรับการ์ดเดสก์ท็อปแบบอ้างอิง (หรือที่เรียกว่า Founders Edition สำหรับชิป NVIDIA) ผู้ผลิต OEM อาจเปลี่ยนแปลงจำนวนและประเภทของพอร์ตเอาต์พุต ในขณะที่สำหรับการ์ดโน้ตบุ๊ก ความพร้อมใช้งานของพอร์ตวิดีโอบางประเภทขึ้นอยู่กับรุ่นของแล็ปท็อปมากกว่าตัวการ์ดเอง
ขั้วต่อจอแสดงผล | 1x HDMI, 3x DisplayPort | 1x HDMI, 3x DisplayPort |
HDMI | + | + |
ความเข้ากันได้ของ API และ SDK
รายการ API สำหรับการประมวลผล 3D และการประมวลผลทั่วไปที่รองรับ รวมถึงเวอร์ชันเฉพาะ
DirectX | 12 (12_1) | 12 Ultimate (12_2) |
รุ่นเชดเดอร์ | 6.4 | 6.5 |
OpenGL | 4.6 | 4.6 |
OpenCL | 2.0 | 2.0 |
Vulkan | 1.1.125 | 1.2 |
CUDA | - | 8.5 |
DLSS | - | + |
ประสิทธิภาพการทดสอบแบบสังเคราะห์
การเปรียบเทียบผลการทดสอบที่ไม่เกี่ยวกับเกม โดยคะแนนรวมวัดบนมาตราส่วน 0-100 คะแนน
คะแนนรวมของการทดสอบแบบสังเคราะห์
นี่คือคะแนนการทดสอบแบบรวมของเรา
Passmark
นี่คือการทดสอบ GPU ที่พบได้บ่อยที่สุด โดยจะประเมินการ์ดจอภายใต้ภาระงานหลากหลายประเภท โดยให้การทดสอบแยกต่างหาก 4 ครั้งสำหรับ Direct3D เวอร์ชัน 9, 10, 11 และ 12 (เวอร์ชันสุดท้ายใช้ความละเอียด 4K หากทำได้) รวมถึงการทดสอบเพิ่มเติมที่ใช้คุณสมบัติ DirectCompute
3DMark 11 Performance GPU
3DMark 11 เป็นการทดสอบ DirectX 11 เก่าโดย Futuremark ซึ่งประกอบไปด้วย 4 การทดสอบจาก 2 ฉาก: ฉากแรกแสดงการสำรวจซากเรือจมใต้น้ำโดยเรือดำน้ำหลายลำ อีกฉากหนึ่งแสดงวัดร้างลึกเข้าไปในป่าทึบ การทดสอบทั้งหมดใช้แสงวอลุ่ม (Volumetric Lighting) และ Tessellation อย่างหนัก แม้จะใช้ความละเอียด 1280x720 แต่ก็ยังค่อนข้างกินทรัพยากรฮาร์ดแวร์ ยกเลิกไปในเดือนมกราคม 2020 และถูกแทนที่โดย Time Spy
3DMark Fire Strike Graphics
Fire Strike เป็นการทดสอบ DirectX 11 สำหรับเกมพีซี ประกอบด้วยการทดสอบ 2 ฉากที่แสดงการต่อสู้ระหว่างมนุษย์และสิ่งมีชีวิตที่ทำจากลาวา ใช้ความละเอียด 1920x1080 และสามารถแสดงกราฟิกที่สมจริง กินทรัพยากรฮาร์ดแวร์สูง
GeekBench 5 OpenCL
Geekbench 5 เป็นการทดสอบกราฟิกการ์ดที่แพร่หลาย ประกอบไปด้วยสถานการณ์การทดสอบทั้งหมด 11 รูปแบบ แต่ละรูปแบบอาศัยการประมวลผลของ GPU โดยตรง โดยไม่มีการเรนเดอร์ 3 มิติ การทดสอบนี้ใช้ OpenCL API โดย Khronos Group
GeekBench 5 Vulkan
Geekbench 5 เป็นการทดสอบกราฟิกการ์ดที่แพร่หลาย ประกอบไปด้วยสถานการณ์การทดสอบทั้งหมด 11 รูปแบบ แต่ละรูปแบบอาศัยการประมวลผลของ GPU โดยตรง โดยไม่มีการเรนเดอร์ 3 มิติ การทดสอบนี้ใช้ Vulkan API โดย AMD & Khronos Group
ประสิทธิภาพในการเล่นเกม
มาดูกันว่าการ์ดจอที่นำมาเปรียบเทียบเหมาะสำหรับการเล่นเกมมากน้อยแค่ไหน โดยผลการทดสอบเกมเฉพาะจะวัดเป็นเฟรมต่อวินาที (FPS)
ค่า FPS เฉลี่ยจากเกมพีซีทั้งหมด
นี่คือค่าเฉลี่ยเฟรมต่อวินาทีจากเกมยอดนิยมหลากหลายเกมในหลายความละเอียด:
Full HD | 96
−70.8%
| 164
+70.8%
|
1440p | 60−65
−105%
| 123
+105%
|
4K | 57
−50.9%
| 86
+50.9%
|
ต้นทุนต่อเฟรม, $
1080p | 4.16
+2.5%
| 4.26
−2.5%
|
1440p | 6.65
−17%
| 5.68
+17%
|
4K | 7.00
+16.1%
| 8.13
−16.1%
|
ประสิทธิภาพ FPS ในเกมยอดนิยม
Full HD
Low Preset
Atomic Heart | 85−90
−257%
|
307
+257%
|
Counter-Strike 2 | 170−180
−76.2%
|
300−350
+76.2%
|
Cyberpunk 2077 | 65−70
−125%
|
150−160
+125%
|
Full HD
Medium Preset
Atomic Heart | 85−90
−178%
|
239
+178%
|
Battlefield 5 | 110−120
−53.6%
|
172
+53.6%
|
Counter-Strike 2 | 170−180
−76.2%
|
300−350
+76.2%
|
Cyberpunk 2077 | 65−70
−106%
|
138
+106%
|
Far Cry 5 | 95−100
−60.2%
|
157
+60.2%
|
Fortnite | 130−140
−107%
|
280−290
+107%
|
Forza Horizon 4 | 110−120
−102%
|
230−240
+102%
|
Forza Horizon 5 | 95−100
−60%
|
152
+60%
|
PLAYERUNKNOWN'S BATTLEGROUNDS | 110−120
−48.7%
|
170−180
+48.7%
|
Valorant | 190−200
−76.3%
|
300−350
+76.3%
|
Full HD
High Preset
Atomic Heart | 85−90
−70.9%
|
147
+70.9%
|
Battlefield 5 | 110−120
−39.3%
|
156
+39.3%
|
Counter-Strike 2 | 170−180
−76.2%
|
300−350
+76.2%
|
Counter-Strike: Global Offensive | 270−280
−1.8%
|
270−280
+1.8%
|
Cyberpunk 2077 | 65−70
−100%
|
134
+100%
|
Dota 2 | 107
−37.4%
|
147
+37.4%
|
Far Cry 5 | 95−100
−53.1%
|
150
+53.1%
|
Fortnite | 130−140
−107%
|
280−290
+107%
|
Forza Horizon 4 | 110−120
−102%
|
230−240
+102%
|
Forza Horizon 5 | 95−100
−47.4%
|
140
+47.4%
|
Grand Theft Auto V | 100−110
−40%
|
147
+40%
|
Metro Exodus | 65−70
−88.2%
|
128
+88.2%
|
PLAYERUNKNOWN'S BATTLEGROUNDS | 110−120
−48.7%
|
170−180
+48.7%
|
The Witcher 3: Wild Hunt | 116
−161%
|
303
+161%
|
Valorant | 190−200
−76.3%
|
300−350
+76.3%
|
Full HD
Ultra Preset
Battlefield 5 | 110−120
−29.5%
|
145
+29.5%
|
Cyberpunk 2077 | 65−70
−95.5%
|
131
+95.5%
|
Dota 2 | 102
−32.4%
|
135
+32.4%
|
Far Cry 5 | 95−100
−42.9%
|
140
+42.9%
|
Forza Horizon 4 | 110−120
−102%
|
230−240
+102%
|
PLAYERUNKNOWN'S BATTLEGROUNDS | 110−120
−48.7%
|
170−180
+48.7%
|
The Witcher 3: Wild Hunt | 64
−133%
|
149
+133%
|
Valorant | 190−200
−41.1%
|
268
+41.1%
|
Full HD
Epic Preset
Fortnite | 130−140
−107%
|
280−290
+107%
|
1440p
High Preset
Counter-Strike 2 | 70−75
−155%
|
180−190
+155%
|
Counter-Strike: Global Offensive | 200−210
−119%
|
450−500
+119%
|
Grand Theft Auto V | 55−60
−96.5%
|
112
+96.5%
|
Metro Exodus | 40−45
−126%
|
95
+126%
|
PLAYERUNKNOWN'S BATTLEGROUNDS | 170−180
+0%
|
170−180
+0%
|
Valorant | 220−230
−73.2%
|
350−400
+73.2%
|
1440p
Ultra Preset
Battlefield 5 | 80−85
−53.1%
|
124
+53.1%
|
Cyberpunk 2077 | 30−35
−169%
|
86
+169%
|
Far Cry 5 | 70−75
−92.9%
|
135
+92.9%
|
Forza Horizon 4 | 80−85
−150%
|
200−210
+150%
|
The Witcher 3: Wild Hunt | 50−55
−158%
|
130−140
+158%
|
1440p
Epic Preset
Fortnite | 75−80
−101%
|
150−160
+101%
|
4K
High Preset
Atomic Heart | 24−27
−125%
|
50−55
+125%
|
Counter-Strike 2 | 30−35
−145%
|
80−85
+145%
|
Grand Theft Auto V | 55−60
−142%
|
143
+142%
|
Metro Exodus | 24−27
−150%
|
65
+150%
|
The Witcher 3: Wild Hunt | 42
−174%
|
115
+174%
|
Valorant | 180−190
−81.1%
|
300−350
+81.1%
|
4K
Ultra Preset
Battlefield 5 | 45−50
−93.6%
|
91
+93.6%
|
Counter-Strike 2 | 30−35
−145%
|
80−85
+145%
|
Cyberpunk 2077 | 14−16
−207%
|
43
+207%
|
Dota 2 | 96
−34.4%
|
129
+34.4%
|
Far Cry 5 | 35−40
−161%
|
94
+161%
|
Forza Horizon 4 | 50−55
−180%
|
150−160
+180%
|
PLAYERUNKNOWN'S BATTLEGROUNDS | 35−40
−174%
|
95−100
+174%
|
4K
Epic Preset
Fortnite | 35−40
−126%
|
75−80
+126%
|
นี่คือวิธีที่ Pro Vega 56 และ RTX 3080 แข่งขันกันในเกมยอดนิยม:
- RTX 3080 เร็วกว่า 71% ในความละเอียด 1080p
- RTX 3080 เร็วกว่า 105% ในความละเอียด 1440p
- RTX 3080 เร็วกว่า 51% ในความละเอียด 4K
นี่คือช่วงความแตกต่างของประสิทธิภาพที่สังเกตได้จากเกมยอดนิยม:
- ในเกม Atomic Heart ด้วยความละเอียด 1080p และการตั้งค่า Low Preset อุปกรณ์ RTX 3080 เร็วกว่า 257%
โดยรวมแล้ว ในเกมยอดนิยม:
- RTX 3080 เหนือกว่าใน 62การทดสอบ (98%)
- เสมอกันใน 1การทดสอบ (2%)
สรุปข้อดีและข้อเสีย
คะแนนประสิทธิภาพ | 27.63 | 56.31 |
ความใหม่ล่าสุด | 14 สิงหาคม 2017 | 1 กันยายน 2020 |
จำนวน RAM สูงสุด | 8 จีบี | 10 จีบี |
การผลิตชิปด้วยลิทอกราฟี | 14 nm | 8 nm |
การใช้พลังงาน (TDP) | 210 วัตต์ | 320 วัตต์ |
Pro Vega 56 มีข้อได้เปรียบ ใช้พลังงานน้อยกว่าถึง 52.4%
ในทางกลับกัน RTX 3080 มีข้อได้เปรียบ มีคะแนนประสิทธิภาพรวมสูงกว่าถึง 103.8% และได้เปรียบด้านอายุการเปิดตัวอยู่ที่ 3 ปี และและมีกระบวนการลิทอกราฟีที่ก้าวหน้ากว่าถึง 75%
GeForce RTX 3080 เป็นตัวเลือกที่เราแนะนำ เนื่องจากมีประสิทธิภาพเหนือกว่า Radeon Pro Vega 56 ในการทดสอบประสิทธิภาพ
โปรดทราบว่า Radeon Pro Vega 56 เป็นการ์ดจอเวิร์กสเตชันแบบพกพา ในขณะที่ GeForce RTX 3080 เป็นการ์ดจอเดสก์ท็อป