GeForce GTX 1650 Ti Max-Q เทียบกับ Quadro RTX 3000 มือถือ
คะแนนประสิทธิภาพรวม
เราได้เปรียบเทียบ Quadro RTX 3000 มือถือ กับ GeForce GTX 1650 Ti Max-Q รวมถึงสเปกและข้อมูลประสิทธิภาพ
RTX 3000 มือถือ มีประสิทธิภาพดีกว่า GTX 1650 Ti Max-Q อย่างน่าประทับใจ 57% ตามผลการทดสอบแบบรวมของเรา
รายละเอียดหลัก
สถาปัตยกรรม GPU, กลุ่มตลาด, ความคุ้มค่า และพารามิเตอร์ทั่วไปอื่นๆ ที่ถูกนำมาเปรียบเทียบ
ตำแหน่งในการจัดอันดับประสิทธิภาพ | 214 | 330 |
จัดอันดับตามความนิยม | ไม่ได้อยู่ใน 100 อันดับแรก | ไม่ได้อยู่ใน 100 อันดับแรก |
ประสิทธิภาพการใช้พลังงาน | 22.69 | 23.14 |
สถาปัตยกรรม | Turing (2018−2022) | Turing (2018−2022) |
ชื่อรหัส GPU | TU106 | TU117 |
ประเภทตลาด | เวิร์กสเตชันแบบพกพา | แล็ปท็อป |
วันที่วางจำหน่าย | 27 พฤษภาคม 2019 (เมื่อ 5 ปี ปีที่แล้ว) | 2 เมษายน 2020 (เมื่อ 4 ปี ปีที่แล้ว) |
สเปกโดยละเอียด
พารามิเตอร์ทั่วไป เช่น จำนวนเชดเดอร์, ความถี่พื้นฐานและความถี่บูสต์ของ GPU, กระบวนการผลิต, ความเร็วการประมวลผลและการเท็กซ์เจอร์ โปรดทราบว่าการใช้พลังงานของการ์ดจอบางรุ่นอาจเกินกว่า TDP ที่กำหนดไว้ โดยเฉพาะเมื่อทำการโอเวอร์คล็อก
พาธไลน์ / คอร์ CUDA | 2304 | 1024 |
ความเร็วสัญญาณนาฬิกาหลัก | 945 MHz | 1035 MHz |
เพิ่มความเร็วสัญญาณนาฬิกา | 1380 MHz | 1200 MHz |
จำนวนทรานซิสเตอร์ | 10,800 million | 4,700 million |
เทคโนโลยีกระบวนการผลิต | 12 nm | 12 nm |
การใช้พลังงาน (TDP) | 80 Watt | 50 Watt |
อัตราการเติมเท็กซ์เจอร์ | 198.7 | 76.80 |
ประสิทธิภาพการประมวลผลจุดลอยตัว | 6.359 TFLOPS | 2.458 TFLOPS |
ROPs | 64 | 32 |
TMUs | 144 | 64 |
Tensor Cores | 288 | ไม่มีข้อมูล |
Ray Tracing Cores | 36 | ไม่มีข้อมูล |
ฟอร์มแฟกเตอร์และความเข้ากันได้
ข้อมูลเกี่ยวกับความเข้ากันได้กับอุปกรณ์คอมพิวเตอร์อื่นๆ มีประโยชน์เมื่อเลือกการกำหนดค่าคอมพิวเตอร์ในอนาคตหรืออัปเกรดคอมพิวเตอร์ที่มีอยู่ สำหรับการ์ดจอเดสก์ท็อป จะรวมถึงอินเทอร์เฟซและบัส (ความเข้ากันได้กับเมนบอร์ด) และขั้วต่อไฟเพิ่มเติม (ความเข้ากันได้กับหน่วยจ่ายไฟ)
ขนาดแล็ปท็อป | large | medium sized |
อินเทอร์เฟซ | PCIe 3.0 x16 | PCIe 3.0 x16 |
ขั้วต่อพลังงานเสริม | ไม่มีข้อมูล | None |
ความจุและประเภทของ VRAM
พารามิเตอร์ของ VRAM ที่ติดตั้ง: ประเภท, ขนาด, บัส, ความถี่ และแบนด์วิดท์ที่ได้ GPU แบบรวมไม่มี VRAM เฉพาะ และใช้ส่วนแบ่งของ RAM ระบบแทน
ประเภทหน่วยความจำ | GDDR6 | GDDR6 |
จำนวน RAM สูงสุด | 6 จีบี | 4 จีบี |
ความกว้างบัสหน่วยความจำ | 256 Bit | 128 Bit |
ความเร็วของนาฬิกาหน่วยความจำ | 1750 MHz | 1250 MHz |
448.0 จีบี/s | 160.0 จีบี/s | |
หน่วยความจำที่ใช้ร่วมกัน | - | - |
การเชื่อมต่อและเอาต์พุต
ประเภทและจำนวนของตัวเชื่อมต่อวิดีโอที่มีใน GPU ที่รีวิว โดยทั่วไป ข้อมูลในส่วนนี้จะแม่นยำเฉพาะสำหรับการ์ดเดสก์ท็อปแบบอ้างอิง (หรือที่เรียกว่า Founders Edition สำหรับชิป NVIDIA) ผู้ผลิต OEM อาจเปลี่ยนแปลงจำนวนและประเภทของพอร์ตเอาต์พุต ในขณะที่สำหรับการ์ดโน้ตบุ๊ก ความพร้อมใช้งานของพอร์ตวิดีโอบางประเภทขึ้นอยู่กับรุ่นของแล็ปท็อปมากกว่าตัวการ์ดเอง
ขั้วต่อจอแสดงผล | No outputs | No outputs |
รองรับ G-SYNC | + | - |
เทคโนโลยีที่รองรับ
โซลูชันทางเทคโนโลยีที่รองรับ ข้อมูลนี้จะมีประโยชน์หากคุณต้องการเทคโนโลยีเฉพาะสำหรับการใช้งานของคุณ
VR Ready | + | ไม่มีข้อมูล |
ความเข้ากันได้ของ API
รายการ API สำหรับการประมวลผล 3D และการประมวลผลทั่วไปที่รองรับ รวมถึงเวอร์ชันเฉพาะ
DirectX | 12 Ultimate (12_1) | 12 (12_1) |
รุ่นเชดเดอร์ | 6.5 | 6.5 |
OpenGL | 4.6 | 4.6 |
OpenCL | 1.2 | 1.2 |
Vulkan | 1.2.131 | 1.2.140 |
CUDA | 7.5 | 7.5 |
ประสิทธิภาพการทดสอบแบบสังเคราะห์
การเปรียบเทียบผลการทดสอบที่ไม่เกี่ยวกับเกม โดยคะแนนรวมวัดบนมาตราส่วน 0-100 คะแนน
คะแนนรวมของการทดสอบแบบสังเคราะห์
นี่คือคะแนนการทดสอบแบบรวมของเรา เรากำลังปรับปรุงอัลกอริทึมรวมคะแนนอย่างต่อเนื่อง แต่หากคุณพบความไม่สอดคล้องใด ๆ สามารถแจ้งให้เราทราบในส่วนความคิดเห็นได้ เรามักจะแก้ไขปัญหาอย่างรวดเร็ว
Passmark
นี่คือการทดสอบ GPU ที่พบได้บ่อยที่สุด โดยจะประเมินการ์ดจอภายใต้ภาระงานหลากหลายประเภท โดยให้การทดสอบแยกต่างหาก 4 ครั้งสำหรับ Direct3D เวอร์ชัน 9, 10, 11 และ 12 (เวอร์ชันสุดท้ายใช้ความละเอียด 4K หากทำได้) รวมถึงการทดสอบเพิ่มเติมที่ใช้คุณสมบัติ DirectCompute
3DMark 11 Performance GPU
3DMark 11 เป็นการทดสอบ DirectX 11 เก่าโดย Futuremark ซึ่งประกอบไปด้วย 4 การทดสอบจาก 2 ฉาก: ฉากแรกแสดงการสำรวจซากเรือจมใต้น้ำโดยเรือดำน้ำหลายลำ อีกฉากหนึ่งแสดงวัดร้างลึกเข้าไปในป่าทึบ การทดสอบทั้งหมดใช้แสงวอลุ่ม (Volumetric Lighting) และ Tessellation อย่างหนัก แม้จะใช้ความละเอียด 1280x720 แต่ก็ยังค่อนข้างกินทรัพยากรฮาร์ดแวร์ ยกเลิกไปในเดือนมกราคม 2020 และถูกแทนที่โดย Time Spy
3DMark Vantage Performance
3DMark Vantage เป็นการทดสอบ DirectX 10 เก่าที่ใช้ความละเอียด 1280x1024 โดยมีฉากหลัก 2 ฉาก: ฉากแรกแสดงเด็กผู้หญิงคนหนึ่งหนีออกจากฐานทัพในถ้ำกลางทะเล และอีกฉากหนึ่งแสดงยานอวกาศบุกโจมตีดาวเคราะห์ที่ไร้การป้องกัน ยกเลิกไปในเดือนเมษายน 2017 และแนะนำให้ใช้การทดสอบ Time Spy แทน
3DMark Fire Strike Graphics
Fire Strike เป็นการทดสอบ DirectX 11 สำหรับเกมพีซี ประกอบด้วยการทดสอบ 2 ฉากที่แสดงการต่อสู้ระหว่างมนุษย์และสิ่งมีชีวิตที่ทำจากลาวา ใช้ความละเอียด 1920x1080 และสามารถแสดงกราฟิกที่สมจริง กินทรัพยากรฮาร์ดแวร์สูง
3DMark Cloud Gate GPU
Cloud Gate เป็นการทดสอบ DirectX 11 ระดับ 10 ที่ล้าสมัย ซึ่งเคยใช้สำหรับพีซีตามบ้านและแล็ปท็อปพื้นฐาน แสดงฉากการปล่อยยานอวกาศผ่านอุปกรณ์เทเลพอร์ตอวกาศประหลาด ด้วยความละเอียด 1280x720 เช่นเดียวกับ Ice Storm Benchmark ถูกยกเลิกในเดือนมกราคม 2020 และถูกแทนที่โดย 3DMark Night Raid
3DMark Time Spy Graphics
ประสิทธิภาพในการเล่นเกม
มาดูกันว่าการ์ดจอที่นำมาเปรียบเทียบเหมาะสำหรับการเล่นเกมมากน้อยแค่ไหน โดยผลการทดสอบเกมเฉพาะจะวัดเป็นเฟรมต่อวินาที (FPS)
ค่า FPS เฉลี่ยจากเกมพีซีทั้งหมด
นี่คือค่าเฉลี่ยเฟรมต่อวินาทีจากเกมยอดนิยมหลากหลายเกมในหลายความละเอียด:
Full HD | 103
+83.9%
| 56
−83.9%
|
1440p | 55−60
+52.8%
| 36
−52.8%
|
4K | 88
+267%
| 24
−267%
|
ประสิทธิภาพ FPS ในเกมยอดนิยม
Full HD
Low Preset
Counter-Strike 2 | 45−50
+69%
|
27−30
−69%
|
Cyberpunk 2077 | 50−55
+63.6%
|
30−35
−63.6%
|
Full HD
Medium Preset
Battlefield 5 | 80−85
+48.1%
|
50−55
−48.1%
|
Counter-Strike 2 | 45−50
+69%
|
27−30
−69%
|
Cyberpunk 2077 | 50−55
+218%
|
17
−218%
|
Forza Horizon 4 | 110−120
+51.9%
|
77
−51.9%
|
Forza Horizon 5 | 65−70
+53.3%
|
45−50
−53.3%
|
Metro Exodus | 91
+62.5%
|
56
−62.5%
|
Red Dead Redemption 2 | 55−60
−10.5%
|
63
+10.5%
|
Valorant | 100−110
+15.4%
|
91
−15.4%
|
Full HD
High Preset
Battlefield 5 | 80−85
+48.1%
|
50−55
−48.1%
|
Counter-Strike 2 | 45−50
+69%
|
27−30
−69%
|
Cyberpunk 2077 | 50−55
+315%
|
13
−315%
|
Dota 2 | 44
−86.4%
|
82
+86.4%
|
Far Cry 5 | 86
+28.4%
|
67
−28.4%
|
Fortnite | 130−140
+41.3%
|
90−95
−41.3%
|
Forza Horizon 4 | 110−120
+88.7%
|
62
−88.7%
|
Forza Horizon 5 | 65−70
+53.3%
|
45−50
−53.3%
|
Grand Theft Auto V | 85−90
+32.8%
|
67
−32.8%
|
Metro Exodus | 43
+13.2%
|
38
−13.2%
|
PLAYERUNKNOWN'S BATTLEGROUNDS | 110
−7.3%
|
110−120
+7.3%
|
Red Dead Redemption 2 | 55−60
+42.5%
|
40−45
−42.5%
|
The Witcher 3: Wild Hunt | 85−90
+65.4%
|
50−55
−65.4%
|
Valorant | 100−110
+150%
|
42
−150%
|
World of Tanks | 260−270
+25.8%
|
200−210
−25.8%
|
Full HD
Ultra Preset
Battlefield 5 | 80−85
+48.1%
|
50−55
−48.1%
|
Counter-Strike 2 | 45−50
+69%
|
27−30
−69%
|
Cyberpunk 2077 | 50−55
+391%
|
11
−391%
|
Dota 2 | 121
+14.2%
|
106
−14.2%
|
Far Cry 5 | 75−80
+31.7%
|
60−65
−31.7%
|
Forza Horizon 4 | 110−120
+117%
|
54
−117%
|
Forza Horizon 5 | 65−70
+53.3%
|
45−50
−53.3%
|
PLAYERUNKNOWN'S BATTLEGROUNDS | 160−170
+37.3%
|
110−120
−37.3%
|
Valorant | 100−110
+54.4%
|
65−70
−54.4%
|
1440p
High Preset
Dota 2 | 45−50
+73.1%
|
26
−73.1%
|
Grand Theft Auto V | 45−50
+73.1%
|
26
−73.1%
|
PLAYERUNKNOWN'S BATTLEGROUNDS | 170−180
+12.2%
|
150−160
−12.2%
|
Red Dead Redemption 2 | 24−27
+60%
|
14−16
−60%
|
World of Tanks | 170−180
+49.1%
|
110−120
−49.1%
|
1440p
Ultra Preset
Battlefield 5 | 50−55
+55.9%
|
30−35
−55.9%
|
Counter-Strike 2 | 30−35
+0%
|
30−35
+0%
|
Cyberpunk 2077 | 21−24
+76.9%
|
12−14
−76.9%
|
Far Cry 5 | 75−80
+85.7%
|
40−45
−85.7%
|
Forza Horizon 4 | 70−75
+103%
|
35
−103%
|
Forza Horizon 5 | 40−45
+61.5%
|
24−27
−61.5%
|
Metro Exodus | 60−65
+62.2%
|
35−40
−62.2%
|
The Witcher 3: Wild Hunt | 40−45
+73.9%
|
21−24
−73.9%
|
Valorant | 70−75
+71.4%
|
40−45
−71.4%
|
4K
High Preset
Counter-Strike 2 | 24−27
+100%
|
12−14
−100%
|
Dota 2 | 45−50
+84%
|
25
−84%
|
Grand Theft Auto V | 45−50
+84%
|
25
−84%
|
Metro Exodus | 20−22
+66.7%
|
12−14
−66.7%
|
PLAYERUNKNOWN'S BATTLEGROUNDS | 80−85
+62%
|
50−55
−62%
|
Red Dead Redemption 2 | 16−18
+54.5%
|
10−12
−54.5%
|
The Witcher 3: Wild Hunt | 45−50
+84%
|
25
−84%
|
4K
Ultra Preset
Battlefield 5 | 27−30
+75%
|
16−18
−75%
|
Counter-Strike 2 | 24−27
+100%
|
12−14
−100%
|
Cyberpunk 2077 | 9−10
+80%
|
5−6
−80%
|
Dota 2 | 88
+69.2%
|
52
−69.2%
|
Far Cry 5 | 35−40
+66.7%
|
21−24
−66.7%
|
Fortnite | 30−35
+73.7%
|
18−20
−73.7%
|
Forza Horizon 4 | 40−45
+95.2%
|
21
−95.2%
|
Forza Horizon 5 | 21−24
+69.2%
|
12−14
−69.2%
|
Valorant | 35−40
+84.2%
|
18−20
−84.2%
|
นี่คือวิธีที่ RTX 3000 มือถือ และ GTX 1650 Ti Max-Q แข่งขันกันในเกมยอดนิยม:
- RTX 3000 มือถือ เร็วกว่า 84% ในความละเอียด 1080p
- RTX 3000 มือถือ เร็วกว่า 53% ในความละเอียด 1440p
- RTX 3000 มือถือ เร็วกว่า 267% ในความละเอียด 4K
นี่คือช่วงความแตกต่างของประสิทธิภาพที่สังเกตได้จากเกมยอดนิยม:
- ในเกม Cyberpunk 2077 ด้วยความละเอียด 1080p และการตั้งค่า Ultra Preset อุปกรณ์ RTX 3000 มือถือ เร็วกว่า 391%
- ในเกม Dota 2 ด้วยความละเอียด 1080p และการตั้งค่า High Preset อุปกรณ์ GTX 1650 Ti Max-Q เร็วกว่า 86%
โดยรวมแล้ว ในเกมยอดนิยม:
- RTX 3000 มือถือ เหนือกว่าใน 60การทดสอบ (94%)
- GTX 1650 Ti Max-Q เหนือกว่าใน 3การทดสอบ (5%)
- เสมอกันใน 1การทดสอบ (2%)
สรุปข้อดีและข้อเสีย
คะแนนประสิทธิภาพ | 26.32 | 16.78 |
ความใหม่ล่าสุด | 27 พฤษภาคม 2019 | 2 เมษายน 2020 |
จำนวน RAM สูงสุด | 6 จีบี | 4 จีบี |
การใช้พลังงาน (TDP) | 80 วัตต์ | 50 วัตต์ |
RTX 3000 มือถือ มีข้อได้เปรียบ มีคะแนนประสิทธิภาพรวมสูงกว่าถึง 56.9% และ
ในทางกลับกัน GTX 1650 Ti Max-Q มีข้อได้เปรียบ ได้เปรียบด้านอายุการเปิดตัวอยู่ที่ 10 เดือนและใช้พลังงานน้อยกว่าถึง 60%
Quadro RTX 3000 มือถือ เป็นตัวเลือกที่เราแนะนำ เนื่องจากมีประสิทธิภาพเหนือกว่า GeForce GTX 1650 Ti Max-Q ในการทดสอบประสิทธิภาพ
โปรดทราบว่า Quadro RTX 3000 มือถือ เป็นการ์ดจอเวิร์กสเตชันแบบพกพา ในขณะที่ GeForce GTX 1650 Ti Max-Q เป็นการ์ดจอเวิร์กสเตชันแบบพกพาเช่นกัน
หากคุณยังมีคำถามเกี่ยวกับการเลือก GPU ที่รีวิวไว้ สามารถถามได้ในส่วนความคิดเห็น แล้วเราจะตอบกลับ