Radeon Pro WX 3200 เทียบกับ Quadro P2000
คะแนนประสิทธิภาพรวม
เราได้เปรียบเทียบ Quadro P2000 และ Radeon Pro WX 3200 โดยครอบคลุมสเปกและผลการทดสอบที่เกี่ยวข้องทั้งหมด
P2000 มีประสิทธิภาพดีกว่า Pro WX 3200 อย่างมหาศาลถึง 201% ตามผลการทดสอบแบบรวมของเรา
รายละเอียดหลัก
สถาปัตยกรรม GPU, กลุ่มตลาด, ความคุ้มค่า และพารามิเตอร์ทั่วไปอื่นๆ ที่ถูกนำมาเปรียบเทียบ
ตำแหน่งในการจัดอันดับประสิทธิภาพ | 304 | 588 |
จัดอันดับตามความนิยม | ไม่ได้อยู่ใน 100 อันดับแรก | ไม่ได้อยู่ใน 100 อันดับแรก |
ความคุ้มค่าเมื่อเทียบกับราคา | 9.75 | 12.76 |
ประสิทธิภาพการใช้พลังงาน | 17.34 | 6.65 |
สถาปัตยกรรม | Pascal (2016−2021) | GCN 4.0 (2016−2020) |
ชื่อรหัส GPU | GP106 | Polaris 23 |
ประเภทตลาด | เวิร์กสเตชัน | เวิร์กสเตชัน |
วันที่วางจำหน่าย | 6 กุมภาพันธ์ 2017 (เมื่อ 8 ปี ปีที่แล้ว) | 2 กรกฎาคม 2019 (เมื่อ 5 ปี ปีที่แล้ว) |
ราคาเปิดตัว (MSRP) | $585 | $199 |
ความคุ้มค่าเมื่อเทียบกับราคา
อัตราส่วนประสิทธิภาพต่อราคา ยิ่งสูงยิ่งดี
Pro WX 3200 มีความคุ้มค่ามากกว่า Quadro P2000 อยู่ 31%
สเปกโดยละเอียด
พารามิเตอร์ทั่วไป เช่น จำนวนเชดเดอร์, ความถี่พื้นฐานและความถี่บูสต์ของ GPU, กระบวนการผลิต, ความเร็วการประมวลผลและการเท็กซ์เจอร์ โปรดทราบว่าการใช้พลังงานของการ์ดจอบางรุ่นอาจเกินกว่า TDP ที่กำหนดไว้ โดยเฉพาะเมื่อทำการโอเวอร์คล็อก
พาธไลน์ / คอร์ CUDA | 1024 | 640 |
ความเร็วสัญญาณนาฬิกาหลัก | 1076 MHz | 1082 MHz |
เพิ่มความเร็วสัญญาณนาฬิกา | 1480 MHz | ไม่มีข้อมูล |
จำนวนทรานซิสเตอร์ | 4,400 million | 2,200 million |
เทคโนโลยีกระบวนการผลิต | 16 nm | 14 nm |
การใช้พลังงาน (TDP) | 75 Watt | 65 Watt |
อัตราการเติมเท็กซ์เจอร์ | 94.72 | 34.62 |
ประสิทธิภาพการประมวลผลจุดลอยตัว | 3.031 TFLOPS | 1.385 TFLOPS |
ROPs | 40 | 16 |
TMUs | 64 | 32 |
ฟอร์มแฟกเตอร์และความเข้ากันได้
ข้อมูลเกี่ยวกับความเข้ากันได้กับอุปกรณ์คอมพิวเตอร์อื่นๆ มีประโยชน์เมื่อเลือกการกำหนดค่าคอมพิวเตอร์ในอนาคตหรืออัปเกรดคอมพิวเตอร์ที่มีอยู่ สำหรับการ์ดจอเดสก์ท็อป จะรวมถึงอินเทอร์เฟซและบัส (ความเข้ากันได้กับเมนบอร์ด) และขั้วต่อไฟเพิ่มเติม (ความเข้ากันได้กับหน่วยจ่ายไฟ)
อินเทอร์เฟซ | PCIe 3.0 x16 | PCIe 3.0 x8 |
ความยาว | 201 mm | ไม่มีข้อมูล |
ความกว้าง | 1-slot | MXM Module |
ขั้วต่อพลังงานเสริม | None | None |
ความจุและประเภทของ VRAM
พารามิเตอร์ของ VRAM ที่ติดตั้ง: ประเภท, ขนาด, บัส, ความถี่ และแบนด์วิดท์ที่ได้ GPU แบบรวมไม่มี VRAM เฉพาะ และใช้ส่วนแบ่งของ RAM ระบบแทน
ประเภทหน่วยความจำ | GDDR5 | GDDR5 |
จำนวน RAM สูงสุด | 5 จีบี | 4 จีบี |
ความกว้างบัสหน่วยความจำ | 160 Bit | 128 Bit |
ความเร็วของนาฬิกาหน่วยความจำ | 1752 MHz | 1000 MHz |
140.2 จีบี/s | 64 จีบี/s | |
หน่วยความจำที่ใช้ร่วมกัน | - | - |
การเชื่อมต่อและเอาต์พุต
ประเภทและจำนวนของตัวเชื่อมต่อวิดีโอที่มีใน GPU ที่รีวิว โดยทั่วไป ข้อมูลในส่วนนี้จะแม่นยำเฉพาะสำหรับการ์ดเดสก์ท็อปแบบอ้างอิง (หรือที่เรียกว่า Founders Edition สำหรับชิป NVIDIA) ผู้ผลิต OEM อาจเปลี่ยนแปลงจำนวนและประเภทของพอร์ตเอาต์พุต ในขณะที่สำหรับการ์ดโน้ตบุ๊ก ความพร้อมใช้งานของพอร์ตวิดีโอบางประเภทขึ้นอยู่กับรุ่นของแล็ปท็อปมากกว่าตัวการ์ดเอง
ขั้วต่อจอแสดงผล | 4x DisplayPort | 4x mini-DisplayPort |
ความเข้ากันได้ของ API และ SDK
รายการ API สำหรับการประมวลผล 3D และการประมวลผลทั่วไปที่รองรับ รวมถึงเวอร์ชันเฉพาะ
DirectX | 12 (12_1) | 12 (12_0) |
รุ่นเชดเดอร์ | 6.4 | 6.4 |
OpenGL | 4.6 | 4.6 |
OpenCL | 1.2 | 2.0 |
Vulkan | + | 1.2.131 |
CUDA | 6.1 | - |
ประสิทธิภาพการทดสอบแบบสังเคราะห์
การเปรียบเทียบผลการทดสอบที่ไม่เกี่ยวกับเกม โดยคะแนนรวมวัดบนมาตราส่วน 0-100 คะแนน
คะแนนรวมของการทดสอบแบบสังเคราะห์
นี่คือคะแนนการทดสอบแบบรวมของเรา
Passmark
นี่คือการทดสอบ GPU ที่พบได้บ่อยที่สุด โดยจะประเมินการ์ดจอภายใต้ภาระงานหลากหลายประเภท โดยให้การทดสอบแยกต่างหาก 4 ครั้งสำหรับ Direct3D เวอร์ชัน 9, 10, 11 และ 12 (เวอร์ชันสุดท้ายใช้ความละเอียด 4K หากทำได้) รวมถึงการทดสอบเพิ่มเติมที่ใช้คุณสมบัติ DirectCompute
3DMark 11 Performance GPU
3DMark 11 เป็นการทดสอบ DirectX 11 เก่าโดย Futuremark ซึ่งประกอบไปด้วย 4 การทดสอบจาก 2 ฉาก: ฉากแรกแสดงการสำรวจซากเรือจมใต้น้ำโดยเรือดำน้ำหลายลำ อีกฉากหนึ่งแสดงวัดร้างลึกเข้าไปในป่าทึบ การทดสอบทั้งหมดใช้แสงวอลุ่ม (Volumetric Lighting) และ Tessellation อย่างหนัก แม้จะใช้ความละเอียด 1280x720 แต่ก็ยังค่อนข้างกินทรัพยากรฮาร์ดแวร์ ยกเลิกไปในเดือนมกราคม 2020 และถูกแทนที่โดย Time Spy
3DMark Vantage Performance
3DMark Vantage เป็นการทดสอบ DirectX 10 เก่าที่ใช้ความละเอียด 1280x1024 โดยมีฉากหลัก 2 ฉาก: ฉากแรกแสดงเด็กผู้หญิงคนหนึ่งหนีออกจากฐานทัพในถ้ำกลางทะเล และอีกฉากหนึ่งแสดงยานอวกาศบุกโจมตีดาวเคราะห์ที่ไร้การป้องกัน ยกเลิกไปในเดือนเมษายน 2017 และแนะนำให้ใช้การทดสอบ Time Spy แทน
3DMark Fire Strike Graphics
Fire Strike เป็นการทดสอบ DirectX 11 สำหรับเกมพีซี ประกอบด้วยการทดสอบ 2 ฉากที่แสดงการต่อสู้ระหว่างมนุษย์และสิ่งมีชีวิตที่ทำจากลาวา ใช้ความละเอียด 1920x1080 และสามารถแสดงกราฟิกที่สมจริง กินทรัพยากรฮาร์ดแวร์สูง
3DMark Cloud Gate GPU
Cloud Gate เป็นการทดสอบ DirectX 11 ระดับ 10 ที่ล้าสมัย ซึ่งเคยใช้สำหรับพีซีตามบ้านและแล็ปท็อปพื้นฐาน แสดงฉากการปล่อยยานอวกาศผ่านอุปกรณ์เทเลพอร์ตอวกาศประหลาด ด้วยความละเอียด 1280x720 เช่นเดียวกับ Ice Storm Benchmark ถูกยกเลิกในเดือนมกราคม 2020 และถูกแทนที่โดย 3DMark Night Raid
3DMark Ice Storm GPU
Ice Storm Graphics เป็นการทดสอบล้าสมัยในชุดการทดสอบ 3DMark ซึ่งเคยใช้วัดประสิทธิภาพของแล็ปท็อประดับเริ่มต้นและแท็บเล็ต Windows ใช้คุณสมบัติของ DirectX 11 ระดับ 9 ในการแสดงฉากต่อสู้ระหว่างยานอวกาศสองกองใกล้กับดาวเคราะห์น้ำแข็งที่ความละเอียด 1280x720 ยกเลิกไปในเดือนมกราคม 2020 และถูกแทนที่โดย 3DMark Night Raid
ประสิทธิภาพในการเล่นเกม
มาดูกันว่าการ์ดจอที่นำมาเปรียบเทียบเหมาะสำหรับการเล่นเกมมากน้อยแค่ไหน โดยผลการทดสอบเกมเฉพาะจะวัดเป็นเฟรมต่อวินาที (FPS)
ค่า FPS เฉลี่ยจากเกมพีซีทั้งหมด
นี่คือค่าเฉลี่ยเฟรมต่อวินาทีจากเกมยอดนิยมหลากหลายเกมในหลายความละเอียด:
Full HD | 56
+195%
| 19
−195%
|
1440p | 20
+233%
| 6−7
−233%
|
4K | 16
+100%
| 8
−100%
|
ต้นทุนต่อเฟรม, $
1080p | 10.45
+0.3%
| 10.47
−0.3%
|
1440p | 29.25
+13.4%
| 33.17
−13.4%
|
4K | 36.56
−47%
| 24.88
+47%
|
ประสิทธิภาพ FPS ในเกมยอดนิยม
Full HD
Low Preset
Atomic Heart | 45−50
+236%
|
14−16
−236%
|
Counter-Strike 2 | 30−35
+154%
|
12−14
−154%
|
Cyberpunk 2077 | 35−40
+208%
|
12−14
−208%
|
Full HD
Medium Preset
Atomic Heart | 45−50
+236%
|
14−16
−236%
|
Battlefield 5 | 70−75
+196%
|
24−27
−196%
|
Counter-Strike 2 | 30−35
+154%
|
12−14
−154%
|
Cyberpunk 2077 | 35−40
+208%
|
12−14
−208%
|
Far Cry 5 | 47
+135%
|
20
−135%
|
Fortnite | 144
+311%
|
35−40
−311%
|
Forza Horizon 4 | 70−75
+170%
|
27−30
−170%
|
Forza Horizon 5 | 45−50
+250%
|
14−16
−250%
|
PLAYERUNKNOWN'S BATTLEGROUNDS | 53
+141%
|
21−24
−141%
|
Valorant | 130−140
+100%
|
65−70
−100%
|
Full HD
High Preset
Atomic Heart | 45−50
+236%
|
14−16
−236%
|
Battlefield 5 | 70−75
+196%
|
24−27
−196%
|
Counter-Strike 2 | 30−35
+154%
|
12−14
−154%
|
Counter-Strike: Global Offensive | 220−230
+126%
|
95−100
−126%
|
Cyberpunk 2077 | 35−40
+208%
|
12−14
−208%
|
Dota 2 | 102
+108%
|
49
−108%
|
Far Cry 5 | 41
+128%
|
18
−128%
|
Fortnite | 60
+71.4%
|
35−40
−71.4%
|
Forza Horizon 4 | 70−75
+170%
|
27−30
−170%
|
Forza Horizon 5 | 45−50
+250%
|
14−16
−250%
|
Grand Theft Auto V | 65−70
+219%
|
21−24
−219%
|
Metro Exodus | 35−40
+280%
|
10
−280%
|
PLAYERUNKNOWN'S BATTLEGROUNDS | 41
+86.4%
|
21−24
−86.4%
|
The Witcher 3: Wild Hunt | 38
+153%
|
15
−153%
|
Valorant | 130−140
+100%
|
65−70
−100%
|
Full HD
Ultra Preset
Battlefield 5 | 70−75
+196%
|
24−27
−196%
|
Counter-Strike 2 | 30−35
+154%
|
12−14
−154%
|
Cyberpunk 2077 | 35−40
+208%
|
12−14
−208%
|
Dota 2 | 98
+180%
|
35
−180%
|
Far Cry 5 | 35
+106%
|
17
−106%
|
Forza Horizon 4 | 70−75
+170%
|
27−30
−170%
|
Forza Horizon 5 | 45−50
+250%
|
14−16
−250%
|
PLAYERUNKNOWN'S BATTLEGROUNDS | 29
+31.8%
|
21−24
−31.8%
|
The Witcher 3: Wild Hunt | 25
+150%
|
10
−150%
|
Valorant | 130−140
+100%
|
65−70
−100%
|
Full HD
Epic Preset
Fortnite | 45
+28.6%
|
35−40
−28.6%
|
1440p
High Preset
Counter-Strike 2 | 18−20
+217%
|
6−7
−217%
|
Counter-Strike: Global Offensive | 120−130
+187%
|
45−50
−187%
|
Grand Theft Auto V | 30−33
+329%
|
7−8
−329%
|
Metro Exodus | 21−24
+360%
|
5−6
−360%
|
PLAYERUNKNOWN'S BATTLEGROUNDS | 160−170
+351%
|
35−40
−351%
|
Valorant | 170−180
+157%
|
65−70
−157%
|
1440p
Ultra Preset
Battlefield 5 | 50−55
+456%
|
9−10
−456%
|
Cyberpunk 2077 | 16−18
+220%
|
5−6
−220%
|
Far Cry 5 | 21
+75%
|
12−14
−75%
|
Forza Horizon 4 | 40−45
+214%
|
14−16
−214%
|
Forza Horizon 5 | 30−35
+256%
|
9−10
−256%
|
The Witcher 3: Wild Hunt | 27−30
+211%
|
9−10
−211%
|
1440p
Epic Preset
Fortnite | 24
+100%
|
12−14
−100%
|
4K
High Preset
Atomic Heart | 14−16
+180%
|
5−6
−180%
|
Counter-Strike 2 | 8−9 | 0−1 |
Grand Theft Auto V | 30−35
+88.2%
|
16−18
−88.2%
|
Metro Exodus | 14−16
+1300%
|
1−2
−1300%
|
The Witcher 3: Wild Hunt | 13
+160%
|
5
−160%
|
Valorant | 100−105
+233%
|
30−33
−233%
|
4K
Ultra Preset
Battlefield 5 | 24−27
+550%
|
4−5
−550%
|
Counter-Strike 2 | 8−9 | 0−1 |
Cyberpunk 2077 | 7−8
+250%
|
2−3
−250%
|
Dota 2 | 60−65
+589%
|
9
−589%
|
Far Cry 5 | 9
+50%
|
6−7
−50%
|
Forza Horizon 4 | 30−35
+244%
|
9−10
−244%
|
Forza Horizon 5 | 16−18
+433%
|
3−4
−433%
|
PLAYERUNKNOWN'S BATTLEGROUNDS | 7
+16.7%
|
6−7
−16.7%
|
4K
Epic Preset
Fortnite | 10
+66.7%
|
6−7
−66.7%
|
1440p
Ultra Preset
Counter-Strike 2 | 8−9
+0%
|
8−9
+0%
|
นี่คือวิธีที่ Quadro P2000 และ Pro WX 3200 แข่งขันกันในเกมยอดนิยม:
- Quadro P2000 เร็วกว่า 195% ในความละเอียด 1080p
- Quadro P2000 เร็วกว่า 233% ในความละเอียด 1440p
- Quadro P2000 เร็วกว่า 100% ในความละเอียด 4K
นี่คือช่วงความแตกต่างของประสิทธิภาพที่สังเกตได้จากเกมยอดนิยม:
- ในเกม Metro Exodus ด้วยความละเอียด 4K และการตั้งค่า High Preset อุปกรณ์ Quadro P2000 เร็วกว่า 1300%
โดยรวมแล้ว ในเกมยอดนิยม:
- Quadro P2000 เหนือกว่าใน 64การทดสอบ (98%)
- เสมอกันใน 1การทดสอบ (2%)
สรุปข้อดีและข้อเสีย
คะแนนประสิทธิภาพ | 18.80 | 6.24 |
ความใหม่ล่าสุด | 6 กุมภาพันธ์ 2017 | 2 กรกฎาคม 2019 |
จำนวน RAM สูงสุด | 5 จีบี | 4 จีบี |
การผลิตชิปด้วยลิทอกราฟี | 16 nm | 14 nm |
การใช้พลังงาน (TDP) | 75 วัตต์ | 65 วัตต์ |
Quadro P2000 มีข้อได้เปรียบ มีคะแนนประสิทธิภาพรวมสูงกว่าถึง 201.3% และ
ในทางกลับกัน Pro WX 3200 มีข้อได้เปรียบ ได้เปรียบด้านอายุการเปิดตัวอยู่ที่ 2 ปี และมีกระบวนการลิทอกราฟีที่ก้าวหน้ากว่าถึง 14.3%และใช้พลังงานน้อยกว่าถึง 15.4%
Quadro P2000 เป็นตัวเลือกที่เราแนะนำ เนื่องจากมีประสิทธิภาพเหนือกว่า Radeon Pro WX 3200 ในการทดสอบประสิทธิภาพ