GeForce RTX 4070 SUPER เทียบกับ Radeon Pro W6800
คะแนนประสิทธิภาพรวม
เราได้เปรียบเทียบ Radeon Pro W6800 กับ GeForce RTX 4070 SUPER รวมถึงสเปกและข้อมูลประสิทธิภาพ
RTX 4070 SUPER มีประสิทธิภาพดีกว่า Pro W6800 อย่างน่าประทับใจ 52% ตามผลการทดสอบแบบรวมของเรา
รายละเอียดหลัก
สถาปัตยกรรม GPU, กลุ่มตลาด, ความคุ้มค่า และพารามิเตอร์ทั่วไปอื่นๆ ที่ถูกนำมาเปรียบเทียบ
ตำแหน่งในการจัดอันดับประสิทธิภาพ | 57 | 13 |
จัดอันดับตามความนิยม | ไม่ได้อยู่ใน 100 อันดับแรก | 18 |
ความคุ้มค่าเมื่อเทียบกับราคา | 28.36 | 67.56 |
ประสิทธิภาพการใช้พลังงาน | 14.12 | 24.33 |
สถาปัตยกรรม | RDNA 2.0 (2020−2024) | Ada Lovelace (2022−2024) |
ชื่อรหัส GPU | Navi 21 | AD104 |
ประเภทตลาด | เวิร์กสเตชัน | เดสก์ท็อป |
วันที่วางจำหน่าย | 8 มิถุนายน 2021 (เมื่อ 3 ปี ปีที่แล้ว) | 8 มกราคม 2024 (เมื่อ 1 ปี ปีที่แล้ว) |
ราคาเปิดตัว (MSRP) | $2,249 | $599 |
ความคุ้มค่าเมื่อเทียบกับราคา
อัตราส่วนประสิทธิภาพต่อราคา ยิ่งสูงยิ่งดี
RTX 4070 SUPER มีความคุ้มค่ามากกว่า Pro W6800 อยู่ 138%
สเปกโดยละเอียด
พารามิเตอร์ทั่วไป เช่น จำนวนเชดเดอร์, ความถี่พื้นฐานและความถี่บูสต์ของ GPU, กระบวนการผลิต, ความเร็วการประมวลผลและการเท็กซ์เจอร์ โปรดทราบว่าการใช้พลังงานของการ์ดจอบางรุ่นอาจเกินกว่า TDP ที่กำหนดไว้ โดยเฉพาะเมื่อทำการโอเวอร์คล็อก
พาธไลน์ / คอร์ CUDA | 3840 | 7168 |
ความเร็วสัญญาณนาฬิกาหลัก | 2075 MHz | 1980 MHz |
เพิ่มความเร็วสัญญาณนาฬิกา | 2320 MHz | 2475 MHz |
จำนวนทรานซิสเตอร์ | 26,800 million | 35,800 million |
เทคโนโลยีกระบวนการผลิต | 7 nm | 5 nm |
การใช้พลังงาน (TDP) | 250 Watt | 220 Watt |
อัตราการเติมเท็กซ์เจอร์ | 556.8 | 554.4 |
ประสิทธิภาพการประมวลผลจุดลอยตัว | 17.82 TFLOPS | 35.48 TFLOPS |
ROPs | 96 | 80 |
TMUs | 240 | 224 |
Tensor Cores | ไม่มีข้อมูล | 224 |
Ray Tracing Cores | 60 | 56 |
ฟอร์มแฟกเตอร์และความเข้ากันได้
ข้อมูลเกี่ยวกับความเข้ากันได้กับอุปกรณ์คอมพิวเตอร์อื่นๆ มีประโยชน์เมื่อเลือกการกำหนดค่าคอมพิวเตอร์ในอนาคตหรืออัปเกรดคอมพิวเตอร์ที่มีอยู่ สำหรับการ์ดจอเดสก์ท็อป จะรวมถึงอินเทอร์เฟซและบัส (ความเข้ากันได้กับเมนบอร์ด) และขั้วต่อไฟเพิ่มเติม (ความเข้ากันได้กับหน่วยจ่ายไฟ)
อินเทอร์เฟซ | PCIe 4.0 x16 | PCIe 4.0 x16 |
ความยาว | 267 mm | 267 mm |
ความกว้าง | 2-slot | 2-slot |
ขั้วต่อพลังงานเสริม | 1x 6-pin + 1x 8-pin | 1x 16-pin |
ความจุและประเภทของ VRAM
พารามิเตอร์ของ VRAM ที่ติดตั้ง: ประเภท, ขนาด, บัส, ความถี่ และแบนด์วิดท์ที่ได้ GPU แบบรวมไม่มี VRAM เฉพาะ และใช้ส่วนแบ่งของ RAM ระบบแทน
ประเภทหน่วยความจำ | GDDR6 | GDDR6X |
จำนวน RAM สูงสุด | 32 จีบี | 12 จีบี |
ความกว้างบัสหน่วยความจำ | 256 Bit | 192 Bit |
ความเร็วของนาฬิกาหน่วยความจำ | 2000 MHz | 1313 MHz |
512.0 จีบี/s | 504.2 จีบี/s | |
หน่วยความจำที่ใช้ร่วมกัน | - | - |
Resizable BAR | + | + |
การเชื่อมต่อและเอาต์พุต
ประเภทและจำนวนของตัวเชื่อมต่อวิดีโอที่มีใน GPU ที่รีวิว โดยทั่วไป ข้อมูลในส่วนนี้จะแม่นยำเฉพาะสำหรับการ์ดเดสก์ท็อปแบบอ้างอิง (หรือที่เรียกว่า Founders Edition สำหรับชิป NVIDIA) ผู้ผลิต OEM อาจเปลี่ยนแปลงจำนวนและประเภทของพอร์ตเอาต์พุต ในขณะที่สำหรับการ์ดโน้ตบุ๊ก ความพร้อมใช้งานของพอร์ตวิดีโอบางประเภทขึ้นอยู่กับรุ่นของแล็ปท็อปมากกว่าตัวการ์ดเอง
ขั้วต่อจอแสดงผล | 6x mini-DisplayPort | 1x HDMI 2.1, 3x DisplayPort 1.4a |
HDMI | - | + |
ความเข้ากันได้ของ API และ SDK
รายการ API สำหรับการประมวลผล 3D และการประมวลผลทั่วไปที่รองรับ รวมถึงเวอร์ชันเฉพาะ
DirectX | 12 Ultimate (12_2) | 12 Ultimate (12_2) |
รุ่นเชดเดอร์ | 6.5 | 6.7 |
OpenGL | 4.6 | 4.6 |
OpenCL | 2.1 | 3.0 |
Vulkan | 1.2 | 1.3 |
CUDA | - | 8.9 |
DLSS | - | + |
ประสิทธิภาพการทดสอบแบบสังเคราะห์
การเปรียบเทียบผลการทดสอบที่ไม่เกี่ยวกับเกม โดยคะแนนรวมวัดบนมาตราส่วน 0-100 คะแนน
คะแนนรวมของการทดสอบแบบสังเคราะห์
นี่คือคะแนนการทดสอบแบบรวมของเรา
Passmark
นี่คือการทดสอบ GPU ที่พบได้บ่อยที่สุด โดยจะประเมินการ์ดจอภายใต้ภาระงานหลากหลายประเภท โดยให้การทดสอบแยกต่างหาก 4 ครั้งสำหรับ Direct3D เวอร์ชัน 9, 10, 11 และ 12 (เวอร์ชันสุดท้ายใช้ความละเอียด 4K หากทำได้) รวมถึงการทดสอบเพิ่มเติมที่ใช้คุณสมบัติ DirectCompute
3DMark 11 Performance GPU
3DMark 11 เป็นการทดสอบ DirectX 11 เก่าโดย Futuremark ซึ่งประกอบไปด้วย 4 การทดสอบจาก 2 ฉาก: ฉากแรกแสดงการสำรวจซากเรือจมใต้น้ำโดยเรือดำน้ำหลายลำ อีกฉากหนึ่งแสดงวัดร้างลึกเข้าไปในป่าทึบ การทดสอบทั้งหมดใช้แสงวอลุ่ม (Volumetric Lighting) และ Tessellation อย่างหนัก แม้จะใช้ความละเอียด 1280x720 แต่ก็ยังค่อนข้างกินทรัพยากรฮาร์ดแวร์ ยกเลิกไปในเดือนมกราคม 2020 และถูกแทนที่โดย Time Spy
3DMark Fire Strike Graphics
Fire Strike เป็นการทดสอบ DirectX 11 สำหรับเกมพีซี ประกอบด้วยการทดสอบ 2 ฉากที่แสดงการต่อสู้ระหว่างมนุษย์และสิ่งมีชีวิตที่ทำจากลาวา ใช้ความละเอียด 1920x1080 และสามารถแสดงกราฟิกที่สมจริง กินทรัพยากรฮาร์ดแวร์สูง
3DMark Cloud Gate GPU
Cloud Gate เป็นการทดสอบ DirectX 11 ระดับ 10 ที่ล้าสมัย ซึ่งเคยใช้สำหรับพีซีตามบ้านและแล็ปท็อปพื้นฐาน แสดงฉากการปล่อยยานอวกาศผ่านอุปกรณ์เทเลพอร์ตอวกาศประหลาด ด้วยความละเอียด 1280x720 เช่นเดียวกับ Ice Storm Benchmark ถูกยกเลิกในเดือนมกราคม 2020 และถูกแทนที่โดย 3DMark Night Raid
3DMark Ice Storm GPU
Ice Storm Graphics เป็นการทดสอบล้าสมัยในชุดการทดสอบ 3DMark ซึ่งเคยใช้วัดประสิทธิภาพของแล็ปท็อประดับเริ่มต้นและแท็บเล็ต Windows ใช้คุณสมบัติของ DirectX 11 ระดับ 9 ในการแสดงฉากต่อสู้ระหว่างยานอวกาศสองกองใกล้กับดาวเคราะห์น้ำแข็งที่ความละเอียด 1280x720 ยกเลิกไปในเดือนมกราคม 2020 และถูกแทนที่โดย 3DMark Night Raid
ประสิทธิภาพในการเล่นเกม
มาดูกันว่าการ์ดจอที่นำมาเปรียบเทียบเหมาะสำหรับการเล่นเกมมากน้อยแค่ไหน โดยผลการทดสอบเกมเฉพาะจะวัดเป็นเฟรมต่อวินาที (FPS)
ค่า FPS เฉลี่ยจากเกมพีซีทั้งหมด
นี่คือค่าเฉลี่ยเฟรมต่อวินาทีจากเกมยอดนิยมหลากหลายเกมในหลายความละเอียด:
Full HD | 137
−56.2%
| 214
+56.2%
|
1440p | 116
−15.5%
| 134
+15.5%
|
4K | 84
+2.4%
| 82
−2.4%
|
ต้นทุนต่อเฟรม, $
1080p | 16.42
−486%
| 2.80
+486%
|
1440p | 19.39
−334%
| 4.47
+334%
|
4K | 26.77
−267%
| 7.30
+267%
|
ประสิทธิภาพ FPS ในเกมยอดนิยม
Full HD
Low Preset
Atomic Heart | 140−150
−49.7%
|
220−230
+49.7%
|
Counter-Strike 2 | 250−260
−25.9%
|
300−350
+25.9%
|
Cyberpunk 2077 | 110−120
−70.4%
|
196
+70.4%
|
Full HD
Medium Preset
Atomic Heart | 140−150
−49.7%
|
220−230
+49.7%
|
Battlefield 5 | 140−150
−25.7%
|
180−190
+25.7%
|
Counter-Strike 2 | 250−260
−25.9%
|
300−350
+25.9%
|
Cyberpunk 2077 | 110−120
−60%
|
184
+60%
|
Far Cry 5 | 70
−190%
|
203
+190%
|
Fortnite | 200−210
−47.3%
|
300−350
+47.3%
|
Forza Horizon 4 | 180−190
−60.7%
|
290−300
+60.7%
|
Forza Horizon 5 | 140−150
−42.1%
|
200−210
+42.1%
|
PLAYERUNKNOWN'S BATTLEGROUNDS | 170−180
−2.3%
|
170−180
+2.3%
|
Valorant | 260−270
−62.5%
|
400−450
+62.5%
|
Full HD
High Preset
Atomic Heart | 140−150
−49.7%
|
220−230
+49.7%
|
Battlefield 5 | 140−150
−25.7%
|
180−190
+25.7%
|
Counter-Strike 2 | 250−260
−25.9%
|
300−350
+25.9%
|
Counter-Strike: Global Offensive | 270−280
+0%
|
270−280
+0%
|
Cyberpunk 2077 | 110−120
−38.3%
|
159
+38.3%
|
Dota 2 | 99
−51.5%
|
150−160
+51.5%
|
Far Cry 5 | 65
−208%
|
200
+208%
|
Fortnite | 200−210
−47.3%
|
300−350
+47.3%
|
Forza Horizon 4 | 180−190
−60.7%
|
290−300
+60.7%
|
Forza Horizon 5 | 140−150
−42.1%
|
200−210
+42.1%
|
Grand Theft Auto V | 121
−43%
|
173
+43%
|
Metro Exodus | 160
−15.6%
|
185
+15.6%
|
PLAYERUNKNOWN'S BATTLEGROUNDS | 170−180
−2.3%
|
170−180
+2.3%
|
The Witcher 3: Wild Hunt | 199
−107%
|
412
+107%
|
Valorant | 260−270
−62.5%
|
400−450
+62.5%
|
Full HD
Ultra Preset
Battlefield 5 | 140−150
−25.7%
|
180−190
+25.7%
|
Cyberpunk 2077 | 110−120
−25.2%
|
144
+25.2%
|
Dota 2 | 86
−51.2%
|
130−140
+51.2%
|
Far Cry 5 | 62
−206%
|
190
+206%
|
Forza Horizon 4 | 180−190
−60.7%
|
290−300
+60.7%
|
PLAYERUNKNOWN'S BATTLEGROUNDS | 170−180
−2.3%
|
170−180
+2.3%
|
The Witcher 3: Wild Hunt | 157
−28%
|
201
+28%
|
Valorant | 260−270
−62.5%
|
400−450
+62.5%
|
Full HD
Epic Preset
Fortnite | 200−210
−47.3%
|
300−350
+47.3%
|
1440p
High Preset
Counter-Strike 2 | 130−140
−73.5%
|
220−230
+73.5%
|
Counter-Strike: Global Offensive | 300−350
−54.5%
|
500−550
+54.5%
|
Grand Theft Auto V | 88
−68.2%
|
148
+68.2%
|
Metro Exodus | 171
+44.9%
|
118
−44.9%
|
PLAYERUNKNOWN'S BATTLEGROUNDS | 170−180
+0%
|
170−180
+0%
|
Valorant | 290−300
−64.4%
|
450−500
+64.4%
|
1440p
Ultra Preset
Battlefield 5 | 110−120
−64.1%
|
190−200
+64.1%
|
Cyberpunk 2077 | 60−65
−53.3%
|
92
+53.3%
|
Far Cry 5 | 64
−186%
|
183
+186%
|
Forza Horizon 4 | 140−150
−78.6%
|
250−260
+78.6%
|
The Witcher 3: Wild Hunt | 95−100
−58.8%
|
154
+58.8%
|
1440p
Epic Preset
Fortnite | 130−140
−15.3%
|
150−160
+15.3%
|
4K
High Preset
Atomic Heart | 40−45
−77.5%
|
70−75
+77.5%
|
Counter-Strike 2 | 60−65
−71.7%
|
100−110
+71.7%
|
Grand Theft Auto V | 125
−32.8%
|
166
+32.8%
|
Metro Exodus | 55
−34.5%
|
74
+34.5%
|
The Witcher 3: Wild Hunt | 99
−34.3%
|
133
+34.3%
|
Valorant | 280−290
−17.3%
|
300−350
+17.3%
|
4K
Ultra Preset
Battlefield 5 | 75−80
−74.4%
|
130−140
+74.4%
|
Counter-Strike 2 | 60−65
−71.7%
|
100−110
+71.7%
|
Cyberpunk 2077 | 27−30
−57.1%
|
44
+57.1%
|
Dota 2 | 94
−48.9%
|
140−150
+48.9%
|
Far Cry 5 | 60
−71.7%
|
103
+71.7%
|
Forza Horizon 4 | 95−100
−120%
|
210−220
+120%
|
PLAYERUNKNOWN'S BATTLEGROUNDS | 75−80
−28%
|
95−100
+28%
|
4K
Epic Preset
Fortnite | 65−70
−16.2%
|
75−80
+16.2%
|
นี่คือวิธีที่ Pro W6800 และ RTX 4070 SUPER แข่งขันกันในเกมยอดนิยม:
- RTX 4070 SUPER เร็วกว่า 56% ในความละเอียด 1080p
- RTX 4070 SUPER เร็วกว่า 16% ในความละเอียด 1440p
- Pro W6800 เร็วกว่า 2% ในความละเอียด 4K
นี่คือช่วงความแตกต่างของประสิทธิภาพที่สังเกตได้จากเกมยอดนิยม:
- ในเกม Metro Exodus ด้วยความละเอียด 1440p และการตั้งค่า High Preset อุปกรณ์ Pro W6800 เร็วกว่า 45%
- ในเกม Far Cry 5 ด้วยความละเอียด 1080p และการตั้งค่า High Preset อุปกรณ์ RTX 4070 SUPER เร็วกว่า 208%
โดยรวมแล้ว ในเกมยอดนิยม:
- Pro W6800 เหนือกว่าใน 1การทดสอบ (2%)
- RTX 4070 SUPER เหนือกว่าใน 57การทดสอบ (95%)
- เสมอกันใน 2การทดสอบ (3%)
สรุปข้อดีและข้อเสีย
คะแนนประสิทธิภาพ | 44.35 | 67.23 |
ความใหม่ล่าสุด | 8 มิถุนายน 2021 | 8 มกราคม 2024 |
จำนวน RAM สูงสุด | 32 จีบี | 12 จีบี |
การผลิตชิปด้วยลิทอกราฟี | 7 nm | 5 nm |
การใช้พลังงาน (TDP) | 250 วัตต์ | 220 วัตต์ |
Pro W6800 มีข้อได้เปรียบ
ในทางกลับกัน RTX 4070 SUPER มีข้อได้เปรียบ มีคะแนนประสิทธิภาพรวมสูงกว่าถึง 51.6% และได้เปรียบด้านอายุการเปิดตัวอยู่ที่ 2 ปี และมีกระบวนการลิทอกราฟีที่ก้าวหน้ากว่าถึง 40%และใช้พลังงานน้อยกว่าถึง 13.6%
GeForce RTX 4070 SUPER เป็นตัวเลือกที่เราแนะนำ เนื่องจากมีประสิทธิภาพเหนือกว่า Radeon Pro W6800 ในการทดสอบประสิทธิภาพ
โปรดทราบว่า Radeon Pro W6800 เป็นการ์ดจอเวิร์กสเตชัน ในขณะที่ GeForce RTX 4070 SUPER เป็นการ์ดจอเดสก์ท็อป