Radeon R7 250 เทียบกับ GeForce GTX 1660 Ti
คะแนนประสิทธิภาพรวม
เราได้เปรียบเทียบ GeForce GTX 1660 Ti และ Radeon R7 250 โดยครอบคลุมสเปกและผลการทดสอบที่เกี่ยวข้องทั้งหมด
GTX 1660 Ti มีประสิทธิภาพดีกว่า R7 250 อย่างมหาศาลถึง 1139% ตามผลการทดสอบแบบรวมของเรา
รายละเอียดหลัก
สถาปัตยกรรม GPU, กลุ่มตลาด, ความคุ้มค่า และพารามิเตอร์ทั่วไปอื่นๆ ที่ถูกนำมาเปรียบเทียบ
ตำแหน่งในการจัดอันดับประสิทธิภาพ | 167 | 818 |
จัดอันดับตามความนิยม | 31 | ไม่ได้อยู่ใน 100 อันดับแรก |
ความคุ้มค่าเมื่อเทียบกับราคา | 39.08 | 0.10 |
ประสิทธิภาพการใช้พลังงาน | 19.14 | 2.85 |
สถาปัตยกรรม | Turing (2018−2022) | GCN 1.0 (2011−2020) |
ชื่อรหัส GPU | TU116 | Oland |
ประเภทตลาด | เดสก์ท็อป | เดสก์ท็อป |
การออกแบบ | ไม่มีข้อมูล | reference |
วันที่วางจำหน่าย | 22 กุมภาพันธ์ 2019 (เมื่อ 6 ปี ปีที่แล้ว) | 8 ตุลาคม 2013 (เมื่อ 11 ปี ปีที่แล้ว) |
ราคาเปิดตัว (MSRP) | $279 | $89 |
ความคุ้มค่าเมื่อเทียบกับราคา
อัตราส่วนประสิทธิภาพต่อราคา ยิ่งสูงยิ่งดี
GTX 1660 Ti มีความคุ้มค่ามากกว่า R7 250 อยู่ 38980%
สเปกโดยละเอียด
พารามิเตอร์ทั่วไป เช่น จำนวนเชดเดอร์, ความถี่พื้นฐานและความถี่บูสต์ของ GPU, กระบวนการผลิต, ความเร็วการประมวลผลและการเท็กซ์เจอร์ โปรดทราบว่าการใช้พลังงานของการ์ดจอบางรุ่นอาจเกินกว่า TDP ที่กำหนดไว้ โดยเฉพาะเมื่อทำการโอเวอร์คล็อก
พาธไลน์ / คอร์ CUDA | 1536 | 384 |
ความเร็วสัญญาณนาฬิกาหลัก | 1500 MHz | ไม่มีข้อมูล |
เพิ่มความเร็วสัญญาณนาฬิกา | 1770 MHz | 1050 MHz |
จำนวนทรานซิสเตอร์ | 6,600 million | 950 million |
เทคโนโลยีกระบวนการผลิต | 12 nm | 28 nm |
การใช้พลังงาน (TDP) | 120 Watt | 75 Watt |
อัตราการเติมเท็กซ์เจอร์ | 169.9 | 25.20 |
ประสิทธิภาพการประมวลผลจุดลอยตัว | 5.437 TFLOPS | 0.8064 TFLOPS |
ROPs | 48 | 8 |
TMUs | 96 | 24 |
ฟอร์มแฟกเตอร์และความเข้ากันได้
ข้อมูลเกี่ยวกับความเข้ากันได้กับอุปกรณ์คอมพิวเตอร์อื่นๆ มีประโยชน์เมื่อเลือกการกำหนดค่าคอมพิวเตอร์ในอนาคตหรืออัปเกรดคอมพิวเตอร์ที่มีอยู่ สำหรับการ์ดจอเดสก์ท็อป จะรวมถึงอินเทอร์เฟซและบัส (ความเข้ากันได้กับเมนบอร์ด) และขั้วต่อไฟเพิ่มเติม (ความเข้ากันได้กับหน่วยจ่ายไฟ)
การรองรับบัส | ไม่มีข้อมูล | PCIe 3.0 |
อินเทอร์เฟซ | PCIe 3.0 x16 | PCIe 3.0 x8 |
ความยาว | 229 mm | 168 mm |
ความกว้าง | 2-slot | 2-slot |
ขั้วต่อพลังงานเสริม | 1x 8-pin | N/A |
ความจุและประเภทของ VRAM
พารามิเตอร์ของ VRAM ที่ติดตั้ง: ประเภท, ขนาด, บัส, ความถี่ และแบนด์วิดท์ที่ได้ GPU แบบรวมไม่มี VRAM เฉพาะ และใช้ส่วนแบ่งของ RAM ระบบแทน
ประเภทหน่วยความจำ | GDDR6 | GDDR5 |
จำนวน RAM สูงสุด | 6 จีบี | 2 จีบี |
ความกว้างบัสหน่วยความจำ | 192 Bit | 128 Bit |
ความเร็วของนาฬิกาหน่วยความจำ | 1500 MHz | 1150 MHz |
288.0 จีบี/s | 72 จีบี/s | |
หน่วยความจำที่ใช้ร่วมกัน | - | - |
การเชื่อมต่อและเอาต์พุต
ประเภทและจำนวนของตัวเชื่อมต่อวิดีโอที่มีใน GPU ที่รีวิว โดยทั่วไป ข้อมูลในส่วนนี้จะแม่นยำเฉพาะสำหรับการ์ดเดสก์ท็อปแบบอ้างอิง (หรือที่เรียกว่า Founders Edition สำหรับชิป NVIDIA) ผู้ผลิต OEM อาจเปลี่ยนแปลงจำนวนและประเภทของพอร์ตเอาต์พุต ในขณะที่สำหรับการ์ดโน้ตบุ๊ก ความพร้อมใช้งานของพอร์ตวิดีโอบางประเภทขึ้นอยู่กับรุ่นของแล็ปท็อปมากกว่าตัวการ์ดเอง
ขั้วต่อจอแสดงผล | 1x DVI, 1x HDMI, 1x DisplayPort | 1x DVI, 1x HDMI, 1x VGA |
HDMI | + | + |
เทคโนโลยีที่รองรับ
โซลูชันทางเทคโนโลยีที่รองรับ ข้อมูลนี้จะมีประโยชน์หากคุณต้องการเทคโนโลยีเฉพาะสำหรับการใช้งานของคุณ
AppAcceleration | - | + |
CrossFire | - | + |
FreeSync | - | + |
เสียง DDMA | ไม่มีข้อมูล | + |
ความเข้ากันได้ของ API และ SDK
รายการ API สำหรับการประมวลผล 3D และการประมวลผลทั่วไปที่รองรับ รวมถึงเวอร์ชันเฉพาะ
DirectX | 12 (12_1) | DirectX® 12 |
รุ่นเชดเดอร์ | 6.5 | 5.1 |
OpenGL | 4.6 | 4.6 |
OpenCL | 1.2 | 1.2 |
Vulkan | 1.2.131 | - |
CUDA | 7.5 | - |
ประสิทธิภาพการทดสอบแบบสังเคราะห์
การเปรียบเทียบผลการทดสอบที่ไม่เกี่ยวกับเกม โดยคะแนนรวมวัดบนมาตราส่วน 0-100 คะแนน
คะแนนรวมของการทดสอบแบบสังเคราะห์
นี่คือคะแนนการทดสอบแบบรวมของเรา
Passmark
นี่คือการทดสอบ GPU ที่พบได้บ่อยที่สุด โดยจะประเมินการ์ดจอภายใต้ภาระงานหลากหลายประเภท โดยให้การทดสอบแยกต่างหาก 4 ครั้งสำหรับ Direct3D เวอร์ชัน 9, 10, 11 และ 12 (เวอร์ชันสุดท้ายใช้ความละเอียด 4K หากทำได้) รวมถึงการทดสอบเพิ่มเติมที่ใช้คุณสมบัติ DirectCompute
3DMark 11 Performance GPU
3DMark 11 เป็นการทดสอบ DirectX 11 เก่าโดย Futuremark ซึ่งประกอบไปด้วย 4 การทดสอบจาก 2 ฉาก: ฉากแรกแสดงการสำรวจซากเรือจมใต้น้ำโดยเรือดำน้ำหลายลำ อีกฉากหนึ่งแสดงวัดร้างลึกเข้าไปในป่าทึบ การทดสอบทั้งหมดใช้แสงวอลุ่ม (Volumetric Lighting) และ Tessellation อย่างหนัก แม้จะใช้ความละเอียด 1280x720 แต่ก็ยังค่อนข้างกินทรัพยากรฮาร์ดแวร์ ยกเลิกไปในเดือนมกราคม 2020 และถูกแทนที่โดย Time Spy
3DMark Vantage Performance
3DMark Vantage เป็นการทดสอบ DirectX 10 เก่าที่ใช้ความละเอียด 1280x1024 โดยมีฉากหลัก 2 ฉาก: ฉากแรกแสดงเด็กผู้หญิงคนหนึ่งหนีออกจากฐานทัพในถ้ำกลางทะเล และอีกฉากหนึ่งแสดงยานอวกาศบุกโจมตีดาวเคราะห์ที่ไร้การป้องกัน ยกเลิกไปในเดือนเมษายน 2017 และแนะนำให้ใช้การทดสอบ Time Spy แทน
3DMark Fire Strike Graphics
Fire Strike เป็นการทดสอบ DirectX 11 สำหรับเกมพีซี ประกอบด้วยการทดสอบ 2 ฉากที่แสดงการต่อสู้ระหว่างมนุษย์และสิ่งมีชีวิตที่ทำจากลาวา ใช้ความละเอียด 1920x1080 และสามารถแสดงกราฟิกที่สมจริง กินทรัพยากรฮาร์ดแวร์สูง
3DMark Cloud Gate GPU
Cloud Gate เป็นการทดสอบ DirectX 11 ระดับ 10 ที่ล้าสมัย ซึ่งเคยใช้สำหรับพีซีตามบ้านและแล็ปท็อปพื้นฐาน แสดงฉากการปล่อยยานอวกาศผ่านอุปกรณ์เทเลพอร์ตอวกาศประหลาด ด้วยความละเอียด 1280x720 เช่นเดียวกับ Ice Storm Benchmark ถูกยกเลิกในเดือนมกราคม 2020 และถูกแทนที่โดย 3DMark Night Raid
ประสิทธิภาพในการเล่นเกม
มาดูกันว่าการ์ดจอที่นำมาเปรียบเทียบเหมาะสำหรับการเล่นเกมมากน้อยแค่ไหน โดยผลการทดสอบเกมเฉพาะจะวัดเป็นเฟรมต่อวินาที (FPS)
ค่า FPS เฉลี่ยจากเกมพีซีทั้งหมด
นี่คือค่าเฉลี่ยเฟรมต่อวินาทีจากเกมยอดนิยมหลากหลายเกมในหลายความละเอียด:
Full HD | 105
+453%
| 19
−453%
|
1440p | 60
+1400%
| 4−5
−1400%
|
4K | 39
+1200%
| 3−4
−1200%
|
ต้นทุนต่อเฟรม, $
1080p | 2.66
+76.3%
| 4.68
−76.3%
|
1440p | 4.65
+378%
| 22.25
−378%
|
4K | 7.15
+315%
| 29.67
−315%
|
ประสิทธิภาพ FPS ในเกมยอดนิยม
Full HD
Low Preset
Atomic Heart | 90−95
+1400%
|
6−7
−1400%
|
Counter-Strike 2 | 180−190
+2900%
|
6−7
−2900%
|
Cyberpunk 2077 | 78
+1460%
|
5−6
−1460%
|
Full HD
Medium Preset
Atomic Heart | 90−95
+1400%
|
6−7
−1400%
|
Battlefield 5 | 129
+1513%
|
8−9
−1513%
|
Counter-Strike 2 | 180−190
+2900%
|
6−7
−2900%
|
Cyberpunk 2077 | 71
+1320%
|
5−6
−1320%
|
Far Cry 5 | 109
+2625%
|
4−5
−2625%
|
Fortnite | 247
+1958%
|
12−14
−1958%
|
Forza Horizon 4 | 131
+992%
|
12−14
−992%
|
Forza Horizon 5 | 107
+2575%
|
4−5
−2575%
|
PLAYERUNKNOWN'S BATTLEGROUNDS | 200
+1567%
|
12−14
−1567%
|
Valorant | 190−200
+353%
|
40−45
−353%
|
Full HD
High Preset
Atomic Heart | 90−95
+1400%
|
6−7
−1400%
|
Battlefield 5 | 112
+1300%
|
8−9
−1300%
|
Counter-Strike 2 | 180−190
+2900%
|
6−7
−2900%
|
Counter-Strike: Global Offensive | 270−280
+461%
|
45−50
−461%
|
Cyberpunk 2077 | 57
+1040%
|
5−6
−1040%
|
Dota 2 | 181
+596%
|
24−27
−596%
|
Far Cry 5 | 99
+2375%
|
4−5
−2375%
|
Fortnite | 143
+1092%
|
12−14
−1092%
|
Forza Horizon 4 | 122
+917%
|
12−14
−917%
|
Forza Horizon 5 | 94
+2250%
|
4−5
−2250%
|
Grand Theft Auto V | 119
+1883%
|
6−7
−1883%
|
Metro Exodus | 55
+1275%
|
4−5
−1275%
|
PLAYERUNKNOWN'S BATTLEGROUNDS | 150
+1150%
|
12−14
−1150%
|
The Witcher 3: Wild Hunt | 116
+1350%
|
8−9
−1350%
|
Valorant | 190−200
+353%
|
40−45
−353%
|
Full HD
Ultra Preset
Battlefield 5 | 102
+1175%
|
8−9
−1175%
|
Cyberpunk 2077 | 46
+820%
|
5−6
−820%
|
Dota 2 | 168
+546%
|
24−27
−546%
|
Far Cry 5 | 94
+2250%
|
4−5
−2250%
|
Forza Horizon 4 | 97
+708%
|
12−14
−708%
|
PLAYERUNKNOWN'S BATTLEGROUNDS | 129
+975%
|
12−14
−975%
|
The Witcher 3: Wild Hunt | 62
+675%
|
8−9
−675%
|
Valorant | 118
+174%
|
40−45
−174%
|
Full HD
Epic Preset
Fortnite | 117
+875%
|
12−14
−875%
|
1440p
High Preset
Counter-Strike 2 | 75−80
+2400%
|
3−4
−2400%
|
Counter-Strike: Global Offensive | 210−220
+1100%
|
18−20
−1100%
|
Grand Theft Auto V | 62
+6100%
|
1−2
−6100%
|
Metro Exodus | 33 | 0−1 |
PLAYERUNKNOWN'S BATTLEGROUNDS | 170−180
+695%
|
21−24
−695%
|
Valorant | 230−240
+909%
|
21−24
−909%
|
1440p
Ultra Preset
Battlefield 5 | 76
+1167%
|
6−7
−1167%
|
Cyberpunk 2077 | 27
+1250%
|
2−3
−1250%
|
Far Cry 5 | 67
+1575%
|
4−5
−1575%
|
Forza Horizon 4 | 77
+1183%
|
6−7
−1183%
|
The Witcher 3: Wild Hunt | 55−60
+1275%
|
4−5
−1275%
|
1440p
Epic Preset
Fortnite | 75
+1400%
|
5−6
−1400%
|
4K
High Preset
Atomic Heart | 24−27
+1150%
|
2−3
−1150%
|
Counter-Strike 2 | 35−40
+1650%
|
2−3
−1650%
|
Grand Theft Auto V | 56
+273%
|
14−16
−273%
|
Metro Exodus | 21
+2000%
|
1−2
−2000%
|
The Witcher 3: Wild Hunt | 43
+1333%
|
3−4
−1333%
|
Valorant | 180−190
+1346%
|
12−14
−1346%
|
4K
Ultra Preset
Battlefield 5 | 43
+1333%
|
3−4
−1333%
|
Counter-Strike 2 | 35−40
+1650%
|
2−3
−1650%
|
Cyberpunk 2077 | 11
+1000%
|
1−2
−1000%
|
Dota 2 | 94
+1243%
|
7−8
−1243%
|
Far Cry 5 | 35
+1067%
|
3−4
−1067%
|
Forza Horizon 4 | 51
+5000%
|
1−2
−5000%
|
PLAYERUNKNOWN'S BATTLEGROUNDS | 39
+1200%
|
3−4
−1200%
|
4K
Epic Preset
Fortnite | 25
+733%
|
3−4
−733%
|
นี่คือวิธีที่ GTX 1660 Ti และ R7 250 แข่งขันกันในเกมยอดนิยม:
- GTX 1660 Ti เร็วกว่า 453% ในความละเอียด 1080p
- GTX 1660 Ti เร็วกว่า 1400% ในความละเอียด 1440p
- GTX 1660 Ti เร็วกว่า 1200% ในความละเอียด 4K
นี่คือช่วงความแตกต่างของประสิทธิภาพที่สังเกตได้จากเกมยอดนิยม:
- ในเกม Grand Theft Auto V ด้วยความละเอียด 1440p และการตั้งค่า High Preset อุปกรณ์ GTX 1660 Ti เร็วกว่า 6100%
โดยรวมแล้ว ในเกมยอดนิยม:
- โดยไม่มีข้อยกเว้น GTX 1660 Ti เหนือกว่า R7 250 ในการทดสอบทั้ง 56 ครั้งของเรา
สรุปข้อดีและข้อเสีย
คะแนนประสิทธิภาพ | 28.87 | 2.33 |
ความใหม่ล่าสุด | 22 กุมภาพันธ์ 2019 | 8 ตุลาคม 2013 |
จำนวน RAM สูงสุด | 6 จีบี | 2 จีบี |
การผลิตชิปด้วยลิทอกราฟี | 12 nm | 28 nm |
การใช้พลังงาน (TDP) | 120 วัตต์ | 75 วัตต์ |
GTX 1660 Ti มีข้อได้เปรียบ มีคะแนนประสิทธิภาพรวมสูงกว่าถึง 1139.1% และได้เปรียบด้านอายุการเปิดตัวอยู่ที่ 5 ปี และและมีกระบวนการลิทอกราฟีที่ก้าวหน้ากว่าถึง 133.3%
ในทางกลับกัน R7 250 มีข้อได้เปรียบ ใช้พลังงานน้อยกว่าถึง 60%
GeForce GTX 1660 Ti เป็นตัวเลือกที่เราแนะนำ เนื่องจากมีประสิทธิภาพเหนือกว่า Radeon R7 250 ในการทดสอบประสิทธิภาพ