Radeon RX 7700 XT เทียบกับ GeForce GTX 1660 Ti Max-Q
คะแนนประสิทธิภาพรวม
เราได้เปรียบเทียบ GeForce GTX 1660 Ti Max-Q กับ Radeon RX 7700 XT รวมถึงสเปกและข้อมูลประสิทธิภาพ
RX 7700 XT มีประสิทธิภาพดีกว่า GTX 1660 Ti Max-Q อย่างมหาศาลถึง 155% ตามผลการทดสอบแบบรวมของเรา
รายละเอียดหลัก
สถาปัตยกรรม GPU, กลุ่มตลาด, ความคุ้มค่า และพารามิเตอร์ทั่วไปอื่นๆ ที่ถูกนำมาเปรียบเทียบ
ตำแหน่งในการจัดอันดับประสิทธิภาพ | 257 | 47 |
จัดอันดับตามความนิยม | ไม่ได้อยู่ใน 100 อันดับแรก | ไม่ได้อยู่ใน 100 อันดับแรก |
ความคุ้มค่าเมื่อเทียบกับราคา | 69.54 | 71.55 |
ประสิทธิภาพการใช้พลังงาน | 26.15 | 16.32 |
สถาปัตยกรรม | Turing (2018−2022) | RDNA 3.0 (2022−2025) |
ชื่อรหัส GPU | TU116 | Navi 32 |
ประเภทตลาด | แล็ปท็อป | เดสก์ท็อป |
วันที่วางจำหน่าย | 23 เมษายน 2019 (เมื่อ 5 ปี ปีที่แล้ว) | 25 สิงหาคม 2023 (เมื่อ 1 ปี ปีที่แล้ว) |
ราคาเปิดตัว (MSRP) | $229 | $449 |
ความคุ้มค่าเมื่อเทียบกับราคา
อัตราส่วนประสิทธิภาพต่อราคา ยิ่งสูงยิ่งดี
RX 7700 XT มีความคุ้มค่ามากกว่า GTX 1660 Ti Max-Q อยู่ 3%
สเปกโดยละเอียด
พารามิเตอร์ทั่วไป เช่น จำนวนเชดเดอร์, ความถี่พื้นฐานและความถี่บูสต์ของ GPU, กระบวนการผลิต, ความเร็วการประมวลผลและการเท็กซ์เจอร์ โปรดทราบว่าการใช้พลังงานของการ์ดจอบางรุ่นอาจเกินกว่า TDP ที่กำหนดไว้ โดยเฉพาะเมื่อทำการโอเวอร์คล็อก
พาธไลน์ / คอร์ CUDA | 1536 | 3456 |
ความเร็วสัญญาณนาฬิกาหลัก | 1140 MHz | 1435 MHz |
เพิ่มความเร็วสัญญาณนาฬิกา | 1335 MHz | 2544 MHz |
จำนวนทรานซิสเตอร์ | 6,600 million | 28,100 million |
เทคโนโลยีกระบวนการผลิต | 12 nm | 5 nm |
การใช้พลังงาน (TDP) | 60 Watt | 245 Watt |
อัตราการเติมเท็กซ์เจอร์ | 128.2 | 549.5 |
ประสิทธิภาพการประมวลผลจุดลอยตัว | 4.101 TFLOPS | 35.17 TFLOPS |
ROPs | 48 | 96 |
TMUs | 96 | 216 |
Ray Tracing Cores | ไม่มีข้อมูล | 54 |
ฟอร์มแฟกเตอร์และความเข้ากันได้
ข้อมูลเกี่ยวกับความเข้ากันได้กับอุปกรณ์คอมพิวเตอร์อื่นๆ มีประโยชน์เมื่อเลือกการกำหนดค่าคอมพิวเตอร์ในอนาคตหรืออัปเกรดคอมพิวเตอร์ที่มีอยู่ สำหรับการ์ดจอเดสก์ท็อป จะรวมถึงอินเทอร์เฟซและบัส (ความเข้ากันได้กับเมนบอร์ด) และขั้วต่อไฟเพิ่มเติม (ความเข้ากันได้กับหน่วยจ่ายไฟ)
ขนาดแล็ปท็อป | medium sized | ไม่มีข้อมูล |
อินเทอร์เฟซ | PCIe 3.0 x16 | PCIe 4.0 x16 |
ความยาว | ไม่มีข้อมูล | 267 mm |
ความกว้าง | ไม่มีข้อมูล | 2-slot |
ขั้วต่อพลังงานเสริม | None | 2x 8-pin |
ความจุและประเภทของ VRAM
พารามิเตอร์ของ VRAM ที่ติดตั้ง: ประเภท, ขนาด, บัส, ความถี่ และแบนด์วิดท์ที่ได้ GPU แบบรวมไม่มี VRAM เฉพาะ และใช้ส่วนแบ่งของ RAM ระบบแทน
ประเภทหน่วยความจำ | GDDR6 | GDDR6 |
จำนวน RAM สูงสุด | 6 จีบี | 12 จีบี |
ความกว้างบัสหน่วยความจำ | 192 Bit | 192 Bit |
ความเร็วของนาฬิกาหน่วยความจำ | 1500 MHz | 2250 MHz |
288.0 จีบี/s | 432.0 จีบี/s | |
หน่วยความจำที่ใช้ร่วมกัน | - | - |
Resizable BAR | - | + |
การเชื่อมต่อและเอาต์พุต
ประเภทและจำนวนของตัวเชื่อมต่อวิดีโอที่มีใน GPU ที่รีวิว โดยทั่วไป ข้อมูลในส่วนนี้จะแม่นยำเฉพาะสำหรับการ์ดเดสก์ท็อปแบบอ้างอิง (หรือที่เรียกว่า Founders Edition สำหรับชิป NVIDIA) ผู้ผลิต OEM อาจเปลี่ยนแปลงจำนวนและประเภทของพอร์ตเอาต์พุต ในขณะที่สำหรับการ์ดโน้ตบุ๊ก ความพร้อมใช้งานของพอร์ตวิดีโอบางประเภทขึ้นอยู่กับรุ่นของแล็ปท็อปมากกว่าตัวการ์ดเอง
ขั้วต่อจอแสดงผล | No outputs | 1x HDMI 2.1a, 2x DisplayPort 2.1, 1x USB Type-C |
HDMI | - | + |
ความเข้ากันได้ของ API และ SDK
รายการ API สำหรับการประมวลผล 3D และการประมวลผลทั่วไปที่รองรับ รวมถึงเวอร์ชันเฉพาะ
DirectX | 12 (12_1) | 12 Ultimate (12_2) |
รุ่นเชดเดอร์ | 6.5 | 6.7 |
OpenGL | 4.6 | 4.6 |
OpenCL | 1.2 | 2.2 |
Vulkan | 1.2.131 | 1.3 |
CUDA | 7.5 | - |
ประสิทธิภาพการทดสอบแบบสังเคราะห์
การเปรียบเทียบผลการทดสอบที่ไม่เกี่ยวกับเกม โดยคะแนนรวมวัดบนมาตราส่วน 0-100 คะแนน
คะแนนรวมของการทดสอบแบบสังเคราะห์
นี่คือคะแนนการทดสอบแบบรวมของเรา
Passmark
นี่คือการทดสอบ GPU ที่พบได้บ่อยที่สุด โดยจะประเมินการ์ดจอภายใต้ภาระงานหลากหลายประเภท โดยให้การทดสอบแยกต่างหาก 4 ครั้งสำหรับ Direct3D เวอร์ชัน 9, 10, 11 และ 12 (เวอร์ชันสุดท้ายใช้ความละเอียด 4K หากทำได้) รวมถึงการทดสอบเพิ่มเติมที่ใช้คุณสมบัติ DirectCompute
3DMark 11 Performance GPU
3DMark 11 เป็นการทดสอบ DirectX 11 เก่าโดย Futuremark ซึ่งประกอบไปด้วย 4 การทดสอบจาก 2 ฉาก: ฉากแรกแสดงการสำรวจซากเรือจมใต้น้ำโดยเรือดำน้ำหลายลำ อีกฉากหนึ่งแสดงวัดร้างลึกเข้าไปในป่าทึบ การทดสอบทั้งหมดใช้แสงวอลุ่ม (Volumetric Lighting) และ Tessellation อย่างหนัก แม้จะใช้ความละเอียด 1280x720 แต่ก็ยังค่อนข้างกินทรัพยากรฮาร์ดแวร์ ยกเลิกไปในเดือนมกราคม 2020 และถูกแทนที่โดย Time Spy
3DMark Vantage Performance
3DMark Vantage เป็นการทดสอบ DirectX 10 เก่าที่ใช้ความละเอียด 1280x1024 โดยมีฉากหลัก 2 ฉาก: ฉากแรกแสดงเด็กผู้หญิงคนหนึ่งหนีออกจากฐานทัพในถ้ำกลางทะเล และอีกฉากหนึ่งแสดงยานอวกาศบุกโจมตีดาวเคราะห์ที่ไร้การป้องกัน ยกเลิกไปในเดือนเมษายน 2017 และแนะนำให้ใช้การทดสอบ Time Spy แทน
3DMark Fire Strike Graphics
Fire Strike เป็นการทดสอบ DirectX 11 สำหรับเกมพีซี ประกอบด้วยการทดสอบ 2 ฉากที่แสดงการต่อสู้ระหว่างมนุษย์และสิ่งมีชีวิตที่ทำจากลาวา ใช้ความละเอียด 1920x1080 และสามารถแสดงกราฟิกที่สมจริง กินทรัพยากรฮาร์ดแวร์สูง
3DMark Cloud Gate GPU
Cloud Gate เป็นการทดสอบ DirectX 11 ระดับ 10 ที่ล้าสมัย ซึ่งเคยใช้สำหรับพีซีตามบ้านและแล็ปท็อปพื้นฐาน แสดงฉากการปล่อยยานอวกาศผ่านอุปกรณ์เทเลพอร์ตอวกาศประหลาด ด้วยความละเอียด 1280x720 เช่นเดียวกับ Ice Storm Benchmark ถูกยกเลิกในเดือนมกราคม 2020 และถูกแทนที่โดย 3DMark Night Raid
3DMark Ice Storm GPU
Ice Storm Graphics เป็นการทดสอบล้าสมัยในชุดการทดสอบ 3DMark ซึ่งเคยใช้วัดประสิทธิภาพของแล็ปท็อประดับเริ่มต้นและแท็บเล็ต Windows ใช้คุณสมบัติของ DirectX 11 ระดับ 9 ในการแสดงฉากต่อสู้ระหว่างยานอวกาศสองกองใกล้กับดาวเคราะห์น้ำแข็งที่ความละเอียด 1280x720 ยกเลิกไปในเดือนมกราคม 2020 และถูกแทนที่โดย 3DMark Night Raid
ประสิทธิภาพในการเล่นเกม
มาดูกันว่าการ์ดจอที่นำมาเปรียบเทียบเหมาะสำหรับการเล่นเกมมากน้อยแค่ไหน โดยผลการทดสอบเกมเฉพาะจะวัดเป็นเฟรมต่อวินาที (FPS)
ค่า FPS เฉลี่ยจากเกมพีซีทั้งหมด
นี่คือค่าเฉลี่ยเฟรมต่อวินาทีจากเกมยอดนิยมหลากหลายเกมในหลายความละเอียด:
Full HD | 79
−133%
| 184
+133%
|
1440p | 40−45
−155%
| 102
+155%
|
4K | 33
−78.8%
| 59
+78.8%
|
ต้นทุนต่อเฟรม, $
1080p | 2.90
−18.8%
| 2.44
+18.8%
|
1440p | 5.73
−30.1%
| 4.40
+30.1%
|
4K | 6.94
+9.7%
| 7.61
−9.7%
|
ประสิทธิภาพ FPS ในเกมยอดนิยม
Full HD
Low Preset
Atomic Heart | 55−60
−357%
|
265
+357%
|
Counter-Strike 2 | 120−130
−183%
|
351
+183%
|
Cyberpunk 2077 | 45−50
−320%
|
193
+320%
|
Full HD
Medium Preset
Atomic Heart | 55−60
−243%
|
199
+243%
|
Battlefield 5 | 83
−90.4%
|
150−160
+90.4%
|
Counter-Strike 2 | 120−130
−177%
|
344
+177%
|
Cyberpunk 2077 | 45−50
−243%
|
158
+243%
|
Far Cry 5 | 69
−172%
|
188
+172%
|
Fortnite | 92
−160%
|
230−240
+160%
|
Forza Horizon 4 | 85−90
−223%
|
278
+223%
|
Forza Horizon 5 | 65−70
−137%
|
160−170
+137%
|
PLAYERUNKNOWN'S BATTLEGROUNDS | 80−85
−113%
|
170−180
+113%
|
Valorant | 150−160
−92.2%
|
290−300
+92.2%
|
Full HD
High Preset
Atomic Heart | 55−60
−105%
|
119
+105%
|
Battlefield 5 | 78
−103%
|
150−160
+103%
|
Counter-Strike 2 | 120−130
−96%
|
243
+96%
|
Counter-Strike: Global Offensive | 240−250
−13.9%
|
270−280
+13.9%
|
Cyberpunk 2077 | 45−50
−187%
|
132
+187%
|
Dota 2 | 94
−145%
|
230−240
+145%
|
Far Cry 5 | 66
−174%
|
181
+174%
|
Fortnite | 90
−166%
|
230−240
+166%
|
Forza Horizon 4 | 85−90
−216%
|
272
+216%
|
Forza Horizon 5 | 65−70
−137%
|
160−170
+137%
|
Grand Theft Auto V | 87
−90.8%
|
166
+90.8%
|
Metro Exodus | 48
−217%
|
152
+217%
|
PLAYERUNKNOWN'S BATTLEGROUNDS | 80−85
−113%
|
170−180
+113%
|
The Witcher 3: Wild Hunt | 92
−221%
|
295
+221%
|
Valorant | 150−160
−92.2%
|
290−300
+92.2%
|
Full HD
Ultra Preset
Battlefield 5 | 73
−116%
|
150−160
+116%
|
Cyberpunk 2077 | 45−50
−165%
|
122
+165%
|
Dota 2 | 86
−144%
|
210−220
+144%
|
Far Cry 5 | 62
−169%
|
167
+169%
|
Forza Horizon 4 | 85−90
−169%
|
231
+169%
|
PLAYERUNKNOWN'S BATTLEGROUNDS | 80−85
−113%
|
170−180
+113%
|
The Witcher 3: Wild Hunt | 51
−229%
|
168
+229%
|
Valorant | 93
−218%
|
290−300
+218%
|
Full HD
Epic Preset
Fortnite | 79
−203%
|
230−240
+203%
|
1440p
High Preset
Counter-Strike 2 | 45−50
−176%
|
127
+176%
|
Counter-Strike: Global Offensive | 150−160
−154%
|
350−400
+154%
|
Grand Theft Auto V | 35−40
−176%
|
105
+176%
|
Metro Exodus | 27−30
−221%
|
90
+221%
|
PLAYERUNKNOWN'S BATTLEGROUNDS | 170−180
−1.2%
|
170−180
+1.2%
|
Valorant | 190−200
−74.5%
|
300−350
+74.5%
|
1440p
Ultra Preset
Battlefield 5 | 60−65
−120%
|
130−140
+120%
|
Cyberpunk 2077 | 21−24
−281%
|
80
+281%
|
Far Cry 5 | 45−50
−220%
|
157
+220%
|
Forza Horizon 4 | 55−60
−258%
|
197
+258%
|
The Witcher 3: Wild Hunt | 35−40
−233%
|
120
+233%
|
1440p
Epic Preset
Fortnite | 50−55
−200%
|
150−160
+200%
|
4K
High Preset
Atomic Heart | 16−18
−176%
|
45−50
+176%
|
Counter-Strike 2 | 20−22
−55%
|
31
+55%
|
Grand Theft Auto V | 35−40
−187%
|
112
+187%
|
Metro Exodus | 18−20
−217%
|
57
+217%
|
The Witcher 3: Wild Hunt | 31
−187%
|
89
+187%
|
Valorant | 120−130
−148%
|
300−350
+148%
|
4K
Ultra Preset
Battlefield 5 | 38
−142%
|
90−95
+142%
|
Counter-Strike 2 | 20−22
−250%
|
70−75
+250%
|
Cyberpunk 2077 | 9−10
−300%
|
36
+300%
|
Dota 2 | 70−75
−150%
|
180−190
+150%
|
Far Cry 5 | 30
−173%
|
82
+173%
|
Forza Horizon 4 | 35−40
−253%
|
134
+253%
|
PLAYERUNKNOWN'S BATTLEGROUNDS | 21−24
−327%
|
90−95
+327%
|
4K
Epic Preset
Fortnite | 21−24
−243%
|
75−80
+243%
|
นี่คือวิธีที่ GTX 1660 Ti Max-Q และ RX 7700 XT แข่งขันกันในเกมยอดนิยม:
- RX 7700 XT เร็วกว่า 133% ในความละเอียด 1080p
- RX 7700 XT เร็วกว่า 155% ในความละเอียด 1440p
- RX 7700 XT เร็วกว่า 79% ในความละเอียด 4K
นี่คือช่วงความแตกต่างของประสิทธิภาพที่สังเกตได้จากเกมยอดนิยม:
- ในเกม Atomic Heart ด้วยความละเอียด 1080p และการตั้งค่า Low Preset อุปกรณ์ RX 7700 XT เร็วกว่า 357%
โดยรวมแล้ว ในเกมยอดนิยม:
- โดยไม่มีข้อยกเว้น RX 7700 XT เหนือกว่า GTX 1660 Ti Max-Q ในการทดสอบทั้ง 60 ครั้งของเรา
สรุปข้อดีและข้อเสีย
คะแนนประสิทธิภาพ | 19.71 | 50.23 |
ความใหม่ล่าสุด | 23 เมษายน 2019 | 25 สิงหาคม 2023 |
จำนวน RAM สูงสุด | 6 จีบี | 12 จีบี |
การผลิตชิปด้วยลิทอกราฟี | 12 nm | 5 nm |
การใช้พลังงาน (TDP) | 60 วัตต์ | 245 วัตต์ |
GTX 1660 Ti Max-Q มีข้อได้เปรียบ ใช้พลังงานน้อยกว่าถึง 308.3%
ในทางกลับกัน RX 7700 XT มีข้อได้เปรียบ มีคะแนนประสิทธิภาพรวมสูงกว่าถึง 154.8% และได้เปรียบด้านอายุการเปิดตัวอยู่ที่ 4 ปี และและมีกระบวนการลิทอกราฟีที่ก้าวหน้ากว่าถึง 140%
Radeon RX 7700 XT เป็นตัวเลือกที่เราแนะนำ เนื่องจากมีประสิทธิภาพเหนือกว่า GeForce GTX 1660 Ti Max-Q ในการทดสอบประสิทธิภาพ
โปรดทราบว่า GeForce GTX 1660 Ti Max-Q เป็นการ์ดจอโน้ตบุ๊ก ในขณะที่ Radeon RX 7700 XT เป็นการ์ดจอเดสก์ท็อป