GeForce RTX 3080 เทียบกับ GTS 450
คะแนนประสิทธิภาพรวม
เราได้เปรียบเทียบ GeForce GTS 450 และ GeForce RTX 3080 โดยครอบคลุมสเปกและผลการทดสอบที่เกี่ยวข้องทั้งหมด
RTX 3080 มีประสิทธิภาพดีกว่า GTS 450 อย่างมหาศาลถึง 1809% ตามผลการทดสอบแบบรวมของเรา
รายละเอียดหลัก
สถาปัตยกรรม GPU, กลุ่มตลาด, ความคุ้มค่า และพารามิเตอร์ทั่วไปอื่นๆ ที่ถูกนำมาเปรียบเทียบ
ตำแหน่งในการจัดอันดับประสิทธิภาพ | 741 | 32 |
จัดอันดับตามความนิยม | ไม่ได้อยู่ใน 100 อันดับแรก | 100 |
ความคุ้มค่าเมื่อเทียบกับราคา | 0.57 | 46.34 |
ประสิทธิภาพการใช้พลังงาน | 2.22 | 14.01 |
สถาปัตยกรรม | Fermi (2010−2014) | Ampere (2020−2024) |
ชื่อรหัส GPU | GF106 | GA102 |
ประเภทตลาด | เดสก์ท็อป | เดสก์ท็อป |
วันที่วางจำหน่าย | 13 กันยายน 2010 (เมื่อ 14 ปี ปีที่แล้ว) | 1 กันยายน 2020 (เมื่อ 4 ปี ปีที่แล้ว) |
ราคาเปิดตัว (MSRP) | $129 | $699 |
ความคุ้มค่าเมื่อเทียบกับราคา
อัตราส่วนประสิทธิภาพต่อราคา ยิ่งสูงยิ่งดี
RTX 3080 มีความคุ้มค่ามากกว่า GTS 450 อยู่ 8030%
สเปกโดยละเอียด
พารามิเตอร์ทั่วไป เช่น จำนวนเชดเดอร์, ความถี่พื้นฐานและความถี่บูสต์ของ GPU, กระบวนการผลิต, ความเร็วการประมวลผลและการเท็กซ์เจอร์ โปรดทราบว่าการใช้พลังงานของการ์ดจอบางรุ่นอาจเกินกว่า TDP ที่กำหนดไว้ โดยเฉพาะเมื่อทำการโอเวอร์คล็อก
พาธไลน์ / คอร์ CUDA | 192 | 8704 |
ความเร็วสัญญาณนาฬิกาหลัก | 783 MHz | 1440 MHz |
เพิ่มความเร็วสัญญาณนาฬิกา | ไม่มีข้อมูล | 1710 MHz |
จำนวนทรานซิสเตอร์ | 1,170 million | 28,300 million |
เทคโนโลยีกระบวนการผลิต | 40 nm | 8 nm |
การใช้พลังงาน (TDP) | 106 Watt | 320 Watt |
อุณหภูมิ GPU สูงสุด | 100 °C | ไม่มีข้อมูล |
อัตราการเติมเท็กซ์เจอร์ | 25.06 | 465.1 |
ประสิทธิภาพการประมวลผลจุดลอยตัว | 0.6013 TFLOPS | 29.77 TFLOPS |
ROPs | 16 | 96 |
TMUs | 32 | 272 |
Tensor Cores | ไม่มีข้อมูล | 272 |
Ray Tracing Cores | ไม่มีข้อมูล | 68 |
ฟอร์มแฟกเตอร์และความเข้ากันได้
ข้อมูลเกี่ยวกับความเข้ากันได้กับอุปกรณ์คอมพิวเตอร์อื่นๆ มีประโยชน์เมื่อเลือกการกำหนดค่าคอมพิวเตอร์ในอนาคตหรืออัปเกรดคอมพิวเตอร์ที่มีอยู่ สำหรับการ์ดจอเดสก์ท็อป จะรวมถึงอินเทอร์เฟซและบัส (ความเข้ากันได้กับเมนบอร์ด) และขั้วต่อไฟเพิ่มเติม (ความเข้ากันได้กับหน่วยจ่ายไฟ)
การรองรับบัส | PCI-E 2.0 x 16 | ไม่มีข้อมูล |
อินเทอร์เฟซ | PCIe 2.0 x16 | PCIe 4.0 x16 |
ความยาว | 210 mm | 285 mm |
ความสูง | 11.1 ซม | ไม่มีข้อมูล |
ความกว้าง | 2-slot | 2-slot |
ขั้วต่อพลังงานเสริม | 1x 6-pin | 1x 12-pin |
ตัวเลือก SLI | + | - |
ความจุและประเภทของ VRAM
พารามิเตอร์ของ VRAM ที่ติดตั้ง: ประเภท, ขนาด, บัส, ความถี่ และแบนด์วิดท์ที่ได้ GPU แบบรวมไม่มี VRAM เฉพาะ และใช้ส่วนแบ่งของ RAM ระบบแทน
ประเภทหน่วยความจำ | GDDR5 | GDDR6X |
จำนวน RAM สูงสุด | 1 จีบี | 10 จีบี |
ความกว้างบัสหน่วยความจำ | 128 Bit | 320 Bit |
ความเร็วของนาฬิกาหน่วยความจำ | 1804 (3608 data rate) MHz | 1188 MHz |
57.7 จีบี/s | 760.3 จีบี/s | |
หน่วยความจำที่ใช้ร่วมกัน | - | - |
Resizable BAR | - | + |
การเชื่อมต่อและเอาต์พุต
ประเภทและจำนวนของตัวเชื่อมต่อวิดีโอที่มีใน GPU ที่รีวิว โดยทั่วไป ข้อมูลในส่วนนี้จะแม่นยำเฉพาะสำหรับการ์ดเดสก์ท็อปแบบอ้างอิง (หรือที่เรียกว่า Founders Edition สำหรับชิป NVIDIA) ผู้ผลิต OEM อาจเปลี่ยนแปลงจำนวนและประเภทของพอร์ตเอาต์พุต ในขณะที่สำหรับการ์ดโน้ตบุ๊ก ความพร้อมใช้งานของพอร์ตวิดีโอบางประเภทขึ้นอยู่กับรุ่นของแล็ปท็อปมากกว่าตัวการ์ดเอง
ขั้วต่อจอแสดงผล | Mini HDMITwo Dual Link DVI | 1x HDMI, 3x DisplayPort |
HDMI | + | + |
ความละเอียด VGA สูงสุด | 2048x1536 | ไม่มีข้อมูล |
อินพุตเสียงสำหรับ HDMI | Internal | ไม่มีข้อมูล |
ความเข้ากันได้ของ API และ SDK
รายการ API สำหรับการประมวลผล 3D และการประมวลผลทั่วไปที่รองรับ รวมถึงเวอร์ชันเฉพาะ
DirectX | 12 (11_0) | 12 Ultimate (12_2) |
รุ่นเชดเดอร์ | 5.1 | 6.5 |
OpenGL | 4.2 | 4.6 |
OpenCL | 1.1 | 2.0 |
Vulkan | N/A | 1.2 |
CUDA | + | 8.5 |
DLSS | - | + |
ประสิทธิภาพการทดสอบแบบสังเคราะห์
การเปรียบเทียบผลการทดสอบที่ไม่เกี่ยวกับเกม โดยคะแนนรวมวัดบนมาตราส่วน 0-100 คะแนน
คะแนนรวมของการทดสอบแบบสังเคราะห์
นี่คือคะแนนการทดสอบแบบรวมของเรา
Passmark
นี่คือการทดสอบ GPU ที่พบได้บ่อยที่สุด โดยจะประเมินการ์ดจอภายใต้ภาระงานหลากหลายประเภท โดยให้การทดสอบแยกต่างหาก 4 ครั้งสำหรับ Direct3D เวอร์ชัน 9, 10, 11 และ 12 (เวอร์ชันสุดท้ายใช้ความละเอียด 4K หากทำได้) รวมถึงการทดสอบเพิ่มเติมที่ใช้คุณสมบัติ DirectCompute
3DMark 11 Performance GPU
3DMark 11 เป็นการทดสอบ DirectX 11 เก่าโดย Futuremark ซึ่งประกอบไปด้วย 4 การทดสอบจาก 2 ฉาก: ฉากแรกแสดงการสำรวจซากเรือจมใต้น้ำโดยเรือดำน้ำหลายลำ อีกฉากหนึ่งแสดงวัดร้างลึกเข้าไปในป่าทึบ การทดสอบทั้งหมดใช้แสงวอลุ่ม (Volumetric Lighting) และ Tessellation อย่างหนัก แม้จะใช้ความละเอียด 1280x720 แต่ก็ยังค่อนข้างกินทรัพยากรฮาร์ดแวร์ ยกเลิกไปในเดือนมกราคม 2020 และถูกแทนที่โดย Time Spy
3DMark Vantage Performance
3DMark Vantage เป็นการทดสอบ DirectX 10 เก่าที่ใช้ความละเอียด 1280x1024 โดยมีฉากหลัก 2 ฉาก: ฉากแรกแสดงเด็กผู้หญิงคนหนึ่งหนีออกจากฐานทัพในถ้ำกลางทะเล และอีกฉากหนึ่งแสดงยานอวกาศบุกโจมตีดาวเคราะห์ที่ไร้การป้องกัน ยกเลิกไปในเดือนเมษายน 2017 และแนะนำให้ใช้การทดสอบ Time Spy แทน
3DMark Fire Strike Graphics
Fire Strike เป็นการทดสอบ DirectX 11 สำหรับเกมพีซี ประกอบด้วยการทดสอบ 2 ฉากที่แสดงการต่อสู้ระหว่างมนุษย์และสิ่งมีชีวิตที่ทำจากลาวา ใช้ความละเอียด 1920x1080 และสามารถแสดงกราฟิกที่สมจริง กินทรัพยากรฮาร์ดแวร์สูง
3DMark Cloud Gate GPU
Cloud Gate เป็นการทดสอบ DirectX 11 ระดับ 10 ที่ล้าสมัย ซึ่งเคยใช้สำหรับพีซีตามบ้านและแล็ปท็อปพื้นฐาน แสดงฉากการปล่อยยานอวกาศผ่านอุปกรณ์เทเลพอร์ตอวกาศประหลาด ด้วยความละเอียด 1280x720 เช่นเดียวกับ Ice Storm Benchmark ถูกยกเลิกในเดือนมกราคม 2020 และถูกแทนที่โดย 3DMark Night Raid
GeekBench 5 OpenCL
Geekbench 5 เป็นการทดสอบกราฟิกการ์ดที่แพร่หลาย ประกอบไปด้วยสถานการณ์การทดสอบทั้งหมด 11 รูปแบบ แต่ละรูปแบบอาศัยการประมวลผลของ GPU โดยตรง โดยไม่มีการเรนเดอร์ 3 มิติ การทดสอบนี้ใช้ OpenCL API โดย Khronos Group
ประสิทธิภาพในการเล่นเกม
มาดูกันว่าการ์ดจอที่นำมาเปรียบเทียบเหมาะสำหรับการเล่นเกมมากน้อยแค่ไหน โดยผลการทดสอบเกมเฉพาะจะวัดเป็นเฟรมต่อวินาที (FPS)
ค่า FPS เฉลี่ยจากเกมพีซีทั้งหมด
นี่คือค่าเฉลี่ยเฟรมต่อวินาทีจากเกมยอดนิยมหลากหลายเกมในหลายความละเอียด:
900p | 28
−1686%
| 500−550
+1686%
|
Full HD | 39
−321%
| 164
+321%
|
1200p | 27
−1752%
| 500−550
+1752%
|
1440p | 6−7
−1950%
| 123
+1950%
|
4K | 4−5
−2050%
| 86
+2050%
|
ต้นทุนต่อเฟรม, $
1080p | 3.31
+28.9%
| 4.26
−28.9%
|
1440p | 21.50
−278%
| 5.68
+278%
|
4K | 32.25
−297%
| 8.13
+297%
|
ประสิทธิภาพ FPS ในเกมยอดนิยม
Full HD
Low Preset
Atomic Heart | 8−9
−3738%
|
307
+3738%
|
Counter-Strike 2 | 10−11
−2930%
|
300−350
+2930%
|
Cyberpunk 2077 | 7−8
−2057%
|
150−160
+2057%
|
Full HD
Medium Preset
Atomic Heart | 8−9
−2888%
|
239
+2888%
|
Battlefield 5 | 12−14
−1333%
|
172
+1333%
|
Counter-Strike 2 | 10−11
−2930%
|
300−350
+2930%
|
Cyberpunk 2077 | 7−8
−1871%
|
138
+1871%
|
Far Cry 5 | 7−8
−2143%
|
157
+2143%
|
Fortnite | 16−18
−1582%
|
280−290
+1582%
|
Forza Horizon 4 | 14−16
−1473%
|
230−240
+1473%
|
Forza Horizon 5 | 7−8
−2071%
|
152
+2071%
|
PLAYERUNKNOWN'S BATTLEGROUNDS | 14−16
−1164%
|
170−180
+1164%
|
Valorant | 45−50
−600%
|
300−350
+600%
|
Full HD
High Preset
Atomic Heart | 8−9
−1738%
|
147
+1738%
|
Battlefield 5 | 12−14
−1200%
|
156
+1200%
|
Counter-Strike 2 | 10−11
−2930%
|
300−350
+2930%
|
Counter-Strike: Global Offensive | 86
−223%
|
270−280
+223%
|
Cyberpunk 2077 | 7−8
−1814%
|
134
+1814%
|
Dota 2 | 30−33
−390%
|
147
+390%
|
Far Cry 5 | 7−8
−2043%
|
150
+2043%
|
Fortnite | 16−18
−1582%
|
280−290
+1582%
|
Forza Horizon 4 | 14−16
−1473%
|
230−240
+1473%
|
Forza Horizon 5 | 7−8
−1900%
|
140
+1900%
|
Grand Theft Auto V | 9−10
−1533%
|
147
+1533%
|
Metro Exodus | 6−7
−2033%
|
128
+2033%
|
PLAYERUNKNOWN'S BATTLEGROUNDS | 14−16
−1164%
|
170−180
+1164%
|
The Witcher 3: Wild Hunt | 10−11
−2930%
|
303
+2930%
|
Valorant | 45−50
−600%
|
300−350
+600%
|
Full HD
Ultra Preset
Battlefield 5 | 12−14
−1108%
|
145
+1108%
|
Cyberpunk 2077 | 7−8
−1771%
|
131
+1771%
|
Dota 2 | 30−33
−350%
|
135
+350%
|
Far Cry 5 | 7−8
−1900%
|
140
+1900%
|
Forza Horizon 4 | 14−16
−1473%
|
230−240
+1473%
|
PLAYERUNKNOWN'S BATTLEGROUNDS | 14−16
−1164%
|
170−180
+1164%
|
The Witcher 3: Wild Hunt | 10−11
−1390%
|
149
+1390%
|
Valorant | 45−50
−458%
|
268
+458%
|
Full HD
Epic Preset
Fortnite | 16−18
−1582%
|
280−290
+1582%
|
1440p
High Preset
Counter-Strike 2 | 4−5
−4425%
|
180−190
+4425%
|
Counter-Strike: Global Offensive | 24−27
−1796%
|
450−500
+1796%
|
Grand Theft Auto V | 2−3
−5500%
|
112
+5500%
|
Metro Exodus | 1−2
−9400%
|
95
+9400%
|
PLAYERUNKNOWN'S BATTLEGROUNDS | 27−30
−548%
|
170−180
+548%
|
Valorant | 30−35
−1138%
|
350−400
+1138%
|
1440p
Ultra Preset
Cyberpunk 2077 | 2−3
−4200%
|
86
+4200%
|
Far Cry 5 | 5−6
−2600%
|
135
+2600%
|
Forza Horizon 4 | 8−9
−2400%
|
200−210
+2400%
|
The Witcher 3: Wild Hunt | 5−6
−2640%
|
130−140
+2640%
|
1440p
Epic Preset
Fortnite | 6−7
−2417%
|
150−160
+2417%
|
4K
High Preset
Atomic Heart | 2−3
−2600%
|
50−55
+2600%
|
Grand Theft Auto V | 16−18
−794%
|
143
+794%
|
Valorant | 16−18
−1938%
|
300−350
+1938%
|
4K
Ultra Preset
Cyberpunk 2077 | 1−2
−4200%
|
43
+4200%
|
Dota 2 | 10−11
−1190%
|
129
+1190%
|
Far Cry 5 | 3−4
−3033%
|
94
+3033%
|
Forza Horizon 4 | 3−4
−4933%
|
150−160
+4933%
|
PLAYERUNKNOWN'S BATTLEGROUNDS | 4−5
−2300%
|
95−100
+2300%
|
4K
Epic Preset
Fortnite | 4−5
−1875%
|
75−80
+1875%
|
1440p
Ultra Preset
Battlefield 5 | 124
+0%
|
124
+0%
|
4K
High Preset
Counter-Strike 2 | 80−85
+0%
|
80−85
+0%
|
Metro Exodus | 65
+0%
|
65
+0%
|
The Witcher 3: Wild Hunt | 115
+0%
|
115
+0%
|
4K
Ultra Preset
Battlefield 5 | 91
+0%
|
91
+0%
|
Counter-Strike 2 | 80−85
+0%
|
80−85
+0%
|
นี่คือวิธีที่ GTS 450 และ RTX 3080 แข่งขันกันในเกมยอดนิยม:
- RTX 3080 เร็วกว่า 1686% ในความละเอียด 900p
- RTX 3080 เร็วกว่า 321% ในความละเอียด 1080p
- RTX 3080 เร็วกว่า 1752% ในความละเอียด 1200p
- RTX 3080 เร็วกว่า 1950% ในความละเอียด 1440p
- RTX 3080 เร็วกว่า 2050% ในความละเอียด 4K
นี่คือช่วงความแตกต่างของประสิทธิภาพที่สังเกตได้จากเกมยอดนิยม:
- ในเกม Metro Exodus ด้วยความละเอียด 1440p และการตั้งค่า High Preset อุปกรณ์ RTX 3080 เร็วกว่า 9400%
โดยรวมแล้ว ในเกมยอดนิยม:
- RTX 3080 เหนือกว่าใน 57การทดสอบ (90%)
- เสมอกันใน 6การทดสอบ (10%)
สรุปข้อดีและข้อเสีย
คะแนนประสิทธิภาพ | 2.95 | 56.32 |
ความใหม่ล่าสุด | 13 กันยายน 2010 | 1 กันยายน 2020 |
จำนวน RAM สูงสุด | 1 จีบี | 10 จีบี |
การผลิตชิปด้วยลิทอกราฟี | 40 nm | 8 nm |
การใช้พลังงาน (TDP) | 106 วัตต์ | 320 วัตต์ |
GTS 450 มีข้อได้เปรียบ ใช้พลังงานน้อยกว่าถึง 201.9%
ในทางกลับกัน RTX 3080 มีข้อได้เปรียบ มีคะแนนประสิทธิภาพรวมสูงกว่าถึง 1809.2% และได้เปรียบด้านอายุการเปิดตัวอยู่ที่ 9 ปี และและมีกระบวนการลิทอกราฟีที่ก้าวหน้ากว่าถึง 400%
GeForce RTX 3080 เป็นตัวเลือกที่เราแนะนำ เนื่องจากมีประสิทธิภาพเหนือกว่า GeForce GTS 450 ในการทดสอบประสิทธิภาพ