GeForce RTX 4090 Mobile เทียบกับ Quadro T1000 มือถือ
คะแนนประสิทธิภาพรวม
เราได้เปรียบเทียบ Quadro T1000 มือถือ กับ GeForce RTX 4090 Mobile รวมถึงสเปกและข้อมูลประสิทธิภาพ
RTX 4090 Mobile มีประสิทธิภาพดีกว่า T1000 มือถือ อย่างมหาศาลถึง 314% ตามผลการทดสอบแบบรวมของเรา
รายละเอียดหลัก
สถาปัตยกรรม GPU, กลุ่มตลาด, ความคุ้มค่า และพารามิเตอร์ทั่วไปอื่นๆ ที่ถูกนำมาเปรียบเทียบ
| ตำแหน่งในการจัดอันดับประสิทธิภาพ | 374 | 30 |
| จัดอันดับตามความนิยม | ไม่ได้อยู่ใน 100 อันดับแรก | ไม่ได้อยู่ใน 100 อันดับแรก |
| ประสิทธิภาพการใช้พลังงาน | 24.02 | 41.45 |
| สถาปัตยกรรม | Turing (2018−2022) | Ada Lovelace (2022−2024) |
| ชื่อรหัส GPU | TU117 | AD103 |
| ประเภทตลาด | เวิร์กสเตชันแบบพกพา | แล็ปท็อป |
| วันที่วางจำหน่าย | 27 พฤษภาคม 2019 (เมื่อ 6 ปี ปีที่แล้ว) | 3 มกราคม 2023 (เมื่อ 2 ปี ปีที่แล้ว) |
สเปกโดยละเอียด
พารามิเตอร์ทั่วไป เช่น จำนวนเชดเดอร์, ความถี่พื้นฐานและความถี่บูสต์ของ GPU, กระบวนการผลิต, ความเร็วการประมวลผลและการเท็กซ์เจอร์ โปรดทราบว่าการใช้พลังงานของการ์ดจอบางรุ่นอาจเกินกว่า TDP ที่กำหนดไว้ โดยเฉพาะเมื่อทำการโอเวอร์คล็อก
| พาธไลน์ / คอร์ CUDA | 768 | 9728 |
| ความเร็วสัญญาณนาฬิกาหลัก | 1395 MHz | 1335 MHz |
| เพิ่มความเร็วสัญญาณนาฬิกา | 1455 MHz | 1695 MHz |
| จำนวนทรานซิสเตอร์ | 4,700 million | 45,900 million |
| เทคโนโลยีกระบวนการผลิต | 12 nm | 4 nm |
| การใช้พลังงาน (TDP) | 50 Watt | 120 Watt |
| อัตราการเติมเท็กซ์เจอร์ | 69.84 | 515.3 |
| ประสิทธิภาพการประมวลผลจุดลอยตัว | 2.235 TFLOPS | 32.98 TFLOPS |
| ROPs | 32 | 112 |
| TMUs | 48 | 304 |
| Tensor Cores | ไม่มีข้อมูล | 304 |
| Ray Tracing Cores | ไม่มีข้อมูล | 76 |
| L1 Cache | 768 เคบี | 9.5 เอ็มบี |
| L2 Cache | 1024 เคบี | 64 เอ็มบี |
ฟอร์มแฟกเตอร์และความเข้ากันได้
ข้อมูลเกี่ยวกับความเข้ากันได้กับอุปกรณ์คอมพิวเตอร์อื่นๆ มีประโยชน์เมื่อเลือกการกำหนดค่าคอมพิวเตอร์ในอนาคตหรืออัปเกรดคอมพิวเตอร์ที่มีอยู่ สำหรับการ์ดจอเดสก์ท็อป จะรวมถึงอินเทอร์เฟซและบัส (ความเข้ากันได้กับเมนบอร์ด) และขั้วต่อไฟเพิ่มเติม (ความเข้ากันได้กับหน่วยจ่ายไฟ)
| ขนาดแล็ปท็อป | medium sized | large |
| อินเทอร์เฟซ | PCIe 3.0 x16 | PCIe 4.0 x16 |
| ขั้วต่อพลังงานเสริม | ไม่มีข้อมูล | None |
ความจุและประเภทของ VRAM
พารามิเตอร์ของ VRAM ที่ติดตั้ง: ประเภท, ขนาด, บัส, ความถี่ และแบนด์วิดท์ที่ได้ GPU แบบรวมไม่มี VRAM เฉพาะ และใช้ส่วนแบ่งของ RAM ระบบแทน
| ประเภทหน่วยความจำ | GDDR5 | GDDR6 |
| จำนวน RAM สูงสุด | 4 จีบี | 16 จีบี |
| ความกว้างบัสหน่วยความจำ | 128 Bit | 256 Bit |
| ความเร็วของนาฬิกาหน่วยความจำ | 2000 MHz | 2250 MHz |
| 128.0 จีบี/s | 576.0 จีบี/s | |
| หน่วยความจำที่ใช้ร่วมกัน | - | - |
| Resizable BAR | - | + |
การเชื่อมต่อและเอาต์พุต
ประเภทและจำนวนของตัวเชื่อมต่อวิดีโอที่มีใน GPU ที่รีวิว โดยทั่วไป ข้อมูลในส่วนนี้จะแม่นยำเฉพาะสำหรับการ์ดเดสก์ท็อปแบบอ้างอิง (หรือที่เรียกว่า Founders Edition สำหรับชิป NVIDIA) ผู้ผลิต OEM อาจเปลี่ยนแปลงจำนวนและประเภทของพอร์ตเอาต์พุต ในขณะที่สำหรับการ์ดโน้ตบุ๊ก ความพร้อมใช้งานของพอร์ตวิดีโอบางประเภทขึ้นอยู่กับรุ่นของแล็ปท็อปมากกว่าตัวการ์ดเอง
| ขั้วต่อจอแสดงผล | No outputs | Portable Device Dependent |
ความเข้ากันได้ของ API และ SDK
รายการ API สำหรับการประมวลผล 3D และการประมวลผลทั่วไปที่รองรับ รวมถึงเวอร์ชันเฉพาะ
| DirectX | 12 (12_1) | 12 Ultimate (12_2) |
| รุ่นเชดเดอร์ | 6.5 | 6.7 |
| OpenGL | 4.6 | 4.6 |
| OpenCL | 1.2 | 3.0 |
| Vulkan | 1.2.131 | 1.3 |
| CUDA | 7.5 | 8.9 |
| DLSS | - | + |
ประสิทธิภาพการทดสอบแบบสังเคราะห์
การเปรียบเทียบผลการทดสอบที่ไม่เกี่ยวกับเกม โดยคะแนนรวมวัดบนมาตราส่วน 0-100 คะแนน
คะแนนรวมของการทดสอบแบบสังเคราะห์
นี่คือคะแนนการทดสอบแบบรวมของเรา
Passmark
นี่คือการทดสอบ GPU ที่พบได้บ่อยที่สุด โดยจะประเมินการ์ดจอภายใต้ภาระงานหลากหลายประเภท โดยให้การทดสอบแยกต่างหาก 4 ครั้งสำหรับ Direct3D เวอร์ชัน 9, 10, 11 และ 12 (เวอร์ชันสุดท้ายใช้ความละเอียด 4K หากทำได้) รวมถึงการทดสอบเพิ่มเติมที่ใช้คุณสมบัติ DirectCompute
3DMark 11 Performance GPU
3DMark 11 เป็นการทดสอบ DirectX 11 เก่าโดย Futuremark ซึ่งประกอบไปด้วย 4 การทดสอบจาก 2 ฉาก: ฉากแรกแสดงการสำรวจซากเรือจมใต้น้ำโดยเรือดำน้ำหลายลำ อีกฉากหนึ่งแสดงวัดร้างลึกเข้าไปในป่าทึบ การทดสอบทั้งหมดใช้แสงวอลุ่ม (Volumetric Lighting) และ Tessellation อย่างหนัก แม้จะใช้ความละเอียด 1280x720 แต่ก็ยังค่อนข้างกินทรัพยากรฮาร์ดแวร์ ยกเลิกไปในเดือนมกราคม 2020 และถูกแทนที่โดย Time Spy
3DMark Vantage Performance
3DMark Vantage เป็นการทดสอบ DirectX 10 เก่าที่ใช้ความละเอียด 1280x1024 โดยมีฉากหลัก 2 ฉาก: ฉากแรกแสดงเด็กผู้หญิงคนหนึ่งหนีออกจากฐานทัพในถ้ำกลางทะเล และอีกฉากหนึ่งแสดงยานอวกาศบุกโจมตีดาวเคราะห์ที่ไร้การป้องกัน ยกเลิกไปในเดือนเมษายน 2017 และแนะนำให้ใช้การทดสอบ Time Spy แทน
3DMark Fire Strike Graphics
Fire Strike เป็นการทดสอบ DirectX 11 สำหรับเกมพีซี ประกอบด้วยการทดสอบ 2 ฉากที่แสดงการต่อสู้ระหว่างมนุษย์และสิ่งมีชีวิตที่ทำจากลาวา ใช้ความละเอียด 1920x1080 และสามารถแสดงกราฟิกที่สมจริง กินทรัพยากรฮาร์ดแวร์สูง
3DMark Cloud Gate GPU
Cloud Gate เป็นการทดสอบ DirectX 11 ระดับ 10 ที่ล้าสมัย ซึ่งเคยใช้สำหรับพีซีตามบ้านและแล็ปท็อปพื้นฐาน แสดงฉากการปล่อยยานอวกาศผ่านอุปกรณ์เทเลพอร์ตอวกาศประหลาด ด้วยความละเอียด 1280x720 เช่นเดียวกับ Ice Storm Benchmark ถูกยกเลิกในเดือนมกราคม 2020 และถูกแทนที่โดย 3DMark Night Raid
3DMark Ice Storm GPU
Ice Storm Graphics เป็นการทดสอบล้าสมัยในชุดการทดสอบ 3DMark ซึ่งเคยใช้วัดประสิทธิภาพของแล็ปท็อประดับเริ่มต้นและแท็บเล็ต Windows ใช้คุณสมบัติของ DirectX 11 ระดับ 9 ในการแสดงฉากต่อสู้ระหว่างยานอวกาศสองกองใกล้กับดาวเคราะห์น้ำแข็งที่ความละเอียด 1280x720 ยกเลิกไปในเดือนมกราคม 2020 และถูกแทนที่โดย 3DMark Night Raid
3DMark Time Spy Graphics
ประสิทธิภาพในการเล่นเกม
มาดูกันว่าการ์ดจอที่นำมาเปรียบเทียบเหมาะสำหรับการเล่นเกมมากน้อยแค่ไหน โดยผลการทดสอบเกมเฉพาะจะวัดเป็นเฟรมต่อวินาที (FPS)
ค่า FPS เฉลี่ยจากเกมพีซีทั้งหมด
นี่คือค่าเฉลี่ยเฟรมต่อวินาทีจากเกมยอดนิยมหลากหลายเกมในหลายความละเอียด:
| Full HD | 63
−170%
| 170
+170%
|
| 1440p | 30−35
−333%
| 130
+333%
|
| 4K | 48
−64.6%
| 79
+64.6%
|
ประสิทธิภาพ FPS ในเกมยอดนิยม
Full HD
Low
| Counter-Strike 2 | 90−95
−243%
|
300−350
+243%
|
| Cyberpunk 2077 | 30−35
−345%
|
147
+345%
|
Full HD
Medium
| Battlefield 5 | 60
−192%
|
170−180
+192%
|
| Counter-Strike 2 | 90−95
−167%
|
240
+167%
|
| Cyberpunk 2077 | 30−35
−330%
|
142
+330%
|
| Escape from Tarkov | 88
−37.5%
|
120−130
+37.5%
|
| Far Cry 5 | 62
−179%
|
173
+179%
|
| Fortnite | 85−90
−243%
|
300−350
+243%
|
| Forza Horizon 4 | 65−70
−291%
|
250−260
+291%
|
| Forza Horizon 5 | 50−55
−262%
|
181
+262%
|
| PLAYERUNKNOWN'S BATTLEGROUNDS | 55−60
−195%
|
170−180
+195%
|
| Valorant | 120−130
−189%
|
350−400
+189%
|
Full HD
High
| Battlefield 5 | 52
−237%
|
170−180
+237%
|
| Counter-Strike 2 | 90−95
−138%
|
214
+138%
|
| Counter-Strike: Global Offensive | 200−210
−34.3%
|
270−280
+34.3%
|
| Cyberpunk 2077 | 30−35
−303%
|
133
+303%
|
| Dota 2 | 114
−74.6%
|
199
+74.6%
|
| Escape from Tarkov | 68
−77.9%
|
120−130
+77.9%
|
| Far Cry 5 | 57
−193%
|
167
+193%
|
| Fortnite | 85−90
−243%
|
300−350
+243%
|
| Forza Horizon 4 | 65−70
−291%
|
250−260
+291%
|
| Forza Horizon 5 | 50−55
−248%
|
174
+248%
|
| Grand Theft Auto V | 68
−138%
|
162
+138%
|
| Metro Exodus | 34
−359%
|
156
+359%
|
| PLAYERUNKNOWN'S BATTLEGROUNDS | 55−60
−195%
|
170−180
+195%
|
| The Witcher 3: Wild Hunt | 63
−525%
|
394
+525%
|
| Valorant | 120−130
−189%
|
350−400
+189%
|
Full HD
Ultra
| Battlefield 5 | 47
−272%
|
170−180
+272%
|
| Cyberpunk 2077 | 30−35
−288%
|
128
+288%
|
| Dota 2 | 107
−74.8%
|
187
+74.8%
|
| Escape from Tarkov | 56
−116%
|
120−130
+116%
|
| Far Cry 5 | 53
−198%
|
158
+198%
|
| Forza Horizon 4 | 65−70
−291%
|
250−260
+291%
|
| PLAYERUNKNOWN'S BATTLEGROUNDS | 55−60
−195%
|
170−180
+195%
|
| The Witcher 3: Wild Hunt | 35
−483%
|
204
+483%
|
| Valorant | 120−130
−189%
|
350−400
+189%
|
Full HD
Epic
| Fortnite | 85−90
−243%
|
300−350
+243%
|
1440p
High
| Counter-Strike 2 | 30−35
−458%
|
173
+458%
|
| Counter-Strike: Global Offensive | 110−120
−341%
|
516
+341%
|
| Grand Theft Auto V | 24−27
−431%
|
138
+431%
|
| Metro Exodus | 20−22
−485%
|
117
+485%
|
| PLAYERUNKNOWN'S BATTLEGROUNDS | 150−160
−13.6%
|
170−180
+13.6%
|
| Valorant | 150−160
−205%
|
485
+205%
|
1440p
Ultra
| Battlefield 5 | 45−50
−267%
|
160−170
+267%
|
| Cyberpunk 2077 | 14−16
−579%
|
95
+579%
|
| Escape from Tarkov | 30−35
−264%
|
120−130
+264%
|
| Far Cry 5 | 35−40
−331%
|
151
+331%
|
| Forza Horizon 4 | 35−40
−472%
|
220−230
+472%
|
| The Witcher 3: Wild Hunt | 21−24
−613%
|
164
+613%
|
1440p
Epic
| Fortnite | 35−40
−319%
|
150−160
+319%
|
4K
High
| Counter-Strike 2 | 12−14
−577%
|
88
+577%
|
| Grand Theft Auto V | 27−30
−493%
|
172
+493%
|
| Metro Exodus | 12−14
−583%
|
82
+583%
|
| The Witcher 3: Wild Hunt | 21−24
−582%
|
150
+582%
|
| Valorant | 85−90
−274%
|
300−350
+274%
|
4K
Ultra
| Battlefield 5 | 21−24
−426%
|
120−130
+426%
|
| Counter-Strike 2 | 12−14
−585%
|
85−90
+585%
|
| Cyberpunk 2077 | 6−7
−700%
|
48
+700%
|
| Dota 2 | 48
−273%
|
179
+273%
|
| Escape from Tarkov | 14−16
−447%
|
80−85
+447%
|
| Far Cry 5 | 16−18
−529%
|
107
+529%
|
| Forza Horizon 4 | 27−30
−521%
|
170−180
+521%
|
| PLAYERUNKNOWN'S BATTLEGROUNDS | 14−16
−540%
|
95−100
+540%
|
4K
Epic
| Fortnite | 16−18
−394%
|
75−80
+394%
|
4K
High
| Counter-Strike: Global Offensive | 314
+0%
|
314
+0%
|
นี่คือวิธีที่ T1000 มือถือ และ RTX 4090 Mobile แข่งขันกันในเกมยอดนิยม:
- RTX 4090 Mobile เร็วกว่า 170% ในความละเอียด 1080p
- RTX 4090 Mobile เร็วกว่า 333% ในความละเอียด 1440p
- RTX 4090 Mobile เร็วกว่า 65% ในความละเอียด 4K
นี่คือช่วงความแตกต่างของประสิทธิภาพที่สังเกตได้จากเกมยอดนิยม:
- ในเกม Cyberpunk 2077 ด้วยความละเอียด 4K และการตั้งค่า Ultra Preset อุปกรณ์ RTX 4090 Mobile เร็วกว่า 700%
โดยรวมแล้ว ในเกมยอดนิยม:
- RTX 4090 Mobile เหนือกว่าใน 64การทดสอบ (98%)
- เสมอกันใน 1การทดสอบ (2%)
สรุปข้อดีและข้อเสีย
| คะแนนประสิทธิภาพ | 15.64 | 64.73 |
| ความใหม่ล่าสุด | 27 พฤษภาคม 2019 | 3 มกราคม 2023 |
| จำนวน RAM สูงสุด | 4 จีบี | 16 จีบี |
| การผลิตชิปด้วยลิทอกราฟี | 12 nm | 4 nm |
| การใช้พลังงาน (TDP) | 50 วัตต์ | 120 วัตต์ |
T1000 มือถือ มีข้อได้เปรียบ ใช้พลังงานน้อยกว่าถึง 140%
ในทางกลับกัน RTX 4090 Mobile มีข้อได้เปรียบ มีคะแนนประสิทธิภาพรวมสูงกว่าถึง 313.9% และได้เปรียบด้านอายุการเปิดตัวอยู่ที่ 3 ปี และและมีกระบวนการลิทอกราฟีที่ก้าวหน้ากว่าถึง 200%
GeForce RTX 4090 Mobile เป็นตัวเลือกที่เราแนะนำ เนื่องจากมีประสิทธิภาพเหนือกว่า Quadro T1000 มือถือ ในการทดสอบประสิทธิภาพ
โปรดทราบว่า Quadro T1000 มือถือ เป็นการ์ดจอเวิร์กสเตชันแบบพกพา ในขณะที่ GeForce RTX 4090 Mobile เป็นการ์ดจอเวิร์กสเตชันแบบพกพาเช่นกัน
