GeForce GTX 1050 Max-Q เทียบกับ Quadro M5000M
คะแนนประสิทธิภาพรวม
เราได้เปรียบเทียบ Quadro M5000M กับ GeForce GTX 1050 Max-Q รวมถึงสเปกและข้อมูลประสิทธิภาพ
M5000M มีประสิทธิภาพดีกว่า GTX 1050 Max-Q อย่างน่าประทับใจ 74% ตามผลการทดสอบแบบรวมของเรา
รายละเอียดหลัก
สถาปัตยกรรม GPU, กลุ่มตลาด, ความคุ้มค่า และพารามิเตอร์ทั่วไปอื่นๆ ที่ถูกนำมาเปรียบเทียบ
ตำแหน่งในการจัดอันดับประสิทธิภาพ | 322 | 451 |
จัดอันดับตามความนิยม | ไม่ได้อยู่ใน 100 อันดับแรก | ไม่ได้อยู่ใน 100 อันดับแรก |
ประสิทธิภาพการใช้พลังงาน | 12.34 | 9.48 |
สถาปัตยกรรม | Maxwell 2.0 (2014−2019) | Pascal (2016−2021) |
ชื่อรหัส GPU | GM204 | GP107 |
ประเภทตลาด | เวิร์กสเตชันแบบพกพา | แล็ปท็อป |
วันที่วางจำหน่าย | 18 สิงหาคม 2015 (เมื่อ 9 ปี ปีที่แล้ว) | 3 มกราคม 2018 (เมื่อ 7 ปี ปีที่แล้ว) |
สเปกโดยละเอียด
พารามิเตอร์ทั่วไป เช่น จำนวนเชดเดอร์, ความถี่พื้นฐานและความถี่บูสต์ของ GPU, กระบวนการผลิต, ความเร็วการประมวลผลและการเท็กซ์เจอร์ โปรดทราบว่าการใช้พลังงานของการ์ดจอบางรุ่นอาจเกินกว่า TDP ที่กำหนดไว้ โดยเฉพาะเมื่อทำการโอเวอร์คล็อก
พาธไลน์ / คอร์ CUDA | 1,536 | 640 |
ความเร็วสัญญาณนาฬิกาหลัก | 975 MHz | 1190 MHz |
เพิ่มความเร็วสัญญาณนาฬิกา | 1051 MHz | 1328 MHz |
จำนวนทรานซิสเตอร์ | 5,200 million | 3,300 million |
เทคโนโลยีกระบวนการผลิต | 28 nm | 14 nm |
การใช้พลังงาน (TDP) | 100 Watt | 75 Watt |
อัตราการเติมเท็กซ์เจอร์ | 93.60 | 53.12 |
ประสิทธิภาพการประมวลผลจุดลอยตัว | 2.995 TFLOPS | 1.7 TFLOPS |
ROPs | 64 | 16 |
TMUs | 96 | 40 |
ฟอร์มแฟกเตอร์และความเข้ากันได้
ข้อมูลเกี่ยวกับความเข้ากันได้กับอุปกรณ์คอมพิวเตอร์อื่นๆ มีประโยชน์เมื่อเลือกการกำหนดค่าคอมพิวเตอร์ในอนาคตหรืออัปเกรดคอมพิวเตอร์ที่มีอยู่ สำหรับการ์ดจอเดสก์ท็อป จะรวมถึงอินเทอร์เฟซและบัส (ความเข้ากันได้กับเมนบอร์ด) และขั้วต่อไฟเพิ่มเติม (ความเข้ากันได้กับหน่วยจ่ายไฟ)
ขนาดแล็ปท็อป | large | large |
อินเทอร์เฟซ | PCIe 3.0 x16 | PCIe 3.0 x16 |
ขั้วต่อพลังงานเสริม | None | None |
ความจุและประเภทของ VRAM
พารามิเตอร์ของ VRAM ที่ติดตั้ง: ประเภท, ขนาด, บัส, ความถี่ และแบนด์วิดท์ที่ได้ GPU แบบรวมไม่มี VRAM เฉพาะ และใช้ส่วนแบ่งของ RAM ระบบแทน
ประเภทหน่วยความจำ | GDDR5 | GDDR5 |
จำนวน RAM สูงสุด | 8 จีบี | 4 จีบี |
ความกว้างบัสหน่วยความจำ | 256 Bit | 128 Bit |
ความเร็วของนาฬิกาหน่วยความจำ | 1253 MHz | 1752 MHz |
160 จีบี/s | 112.1 จีบี/s | |
หน่วยความจำที่ใช้ร่วมกัน | - | - |
การเชื่อมต่อและเอาต์พุต
ประเภทและจำนวนของตัวเชื่อมต่อวิดีโอที่มีใน GPU ที่รีวิว โดยทั่วไป ข้อมูลในส่วนนี้จะแม่นยำเฉพาะสำหรับการ์ดเดสก์ท็อปแบบอ้างอิง (หรือที่เรียกว่า Founders Edition สำหรับชิป NVIDIA) ผู้ผลิต OEM อาจเปลี่ยนแปลงจำนวนและประเภทของพอร์ตเอาต์พุต ในขณะที่สำหรับการ์ดโน้ตบุ๊ก ความพร้อมใช้งานของพอร์ตวิดีโอบางประเภทขึ้นอยู่กับรุ่นของแล็ปท็อปมากกว่าตัวการ์ดเอง
ขั้วต่อจอแสดงผล | No outputs | No outputs |
Display Port | 1.2 | ไม่มีข้อมูล |
เทคโนโลยีที่รองรับ
โซลูชันทางเทคโนโลยีที่รองรับ ข้อมูลนี้จะมีประโยชน์หากคุณต้องการเทคโนโลยีเฉพาะสำหรับการใช้งานของคุณ
Optimus | + | - |
3D Vision Pro | + | ไม่มีข้อมูล |
Mosaic | + | ไม่มีข้อมูล |
nView Display Management | + | ไม่มีข้อมูล |
Optimus | + | ไม่มีข้อมูล |
ความเข้ากันได้ของ API และ SDK
รายการ API สำหรับการประมวลผล 3D และการประมวลผลทั่วไปที่รองรับ รวมถึงเวอร์ชันเฉพาะ
DirectX | 12 | 12 (12_1) |
รุ่นเชดเดอร์ | 6.4 | 6.4 |
OpenGL | 4.5 | 4.6 |
OpenCL | 1.2 | 1.2 |
Vulkan | + | 1.2.131 |
CUDA | 5.2 | 6.1 |
ประสิทธิภาพการทดสอบแบบสังเคราะห์
การเปรียบเทียบผลการทดสอบที่ไม่เกี่ยวกับเกม โดยคะแนนรวมวัดบนมาตราส่วน 0-100 คะแนน
คะแนนรวมของการทดสอบแบบสังเคราะห์
นี่คือคะแนนการทดสอบแบบรวมของเรา
Passmark
นี่คือการทดสอบ GPU ที่พบได้บ่อยที่สุด โดยจะประเมินการ์ดจอภายใต้ภาระงานหลากหลายประเภท โดยให้การทดสอบแยกต่างหาก 4 ครั้งสำหรับ Direct3D เวอร์ชัน 9, 10, 11 และ 12 (เวอร์ชันสุดท้ายใช้ความละเอียด 4K หากทำได้) รวมถึงการทดสอบเพิ่มเติมที่ใช้คุณสมบัติ DirectCompute
3DMark 11 Performance GPU
3DMark 11 เป็นการทดสอบ DirectX 11 เก่าโดย Futuremark ซึ่งประกอบไปด้วย 4 การทดสอบจาก 2 ฉาก: ฉากแรกแสดงการสำรวจซากเรือจมใต้น้ำโดยเรือดำน้ำหลายลำ อีกฉากหนึ่งแสดงวัดร้างลึกเข้าไปในป่าทึบ การทดสอบทั้งหมดใช้แสงวอลุ่ม (Volumetric Lighting) และ Tessellation อย่างหนัก แม้จะใช้ความละเอียด 1280x720 แต่ก็ยังค่อนข้างกินทรัพยากรฮาร์ดแวร์ ยกเลิกไปในเดือนมกราคม 2020 และถูกแทนที่โดย Time Spy
3DMark Fire Strike Graphics
Fire Strike เป็นการทดสอบ DirectX 11 สำหรับเกมพีซี ประกอบด้วยการทดสอบ 2 ฉากที่แสดงการต่อสู้ระหว่างมนุษย์และสิ่งมีชีวิตที่ทำจากลาวา ใช้ความละเอียด 1920x1080 และสามารถแสดงกราฟิกที่สมจริง กินทรัพยากรฮาร์ดแวร์สูง
3DMark Cloud Gate GPU
Cloud Gate เป็นการทดสอบ DirectX 11 ระดับ 10 ที่ล้าสมัย ซึ่งเคยใช้สำหรับพีซีตามบ้านและแล็ปท็อปพื้นฐาน แสดงฉากการปล่อยยานอวกาศผ่านอุปกรณ์เทเลพอร์ตอวกาศประหลาด ด้วยความละเอียด 1280x720 เช่นเดียวกับ Ice Storm Benchmark ถูกยกเลิกในเดือนมกราคม 2020 และถูกแทนที่โดย 3DMark Night Raid
3DMark Ice Storm GPU
Ice Storm Graphics เป็นการทดสอบล้าสมัยในชุดการทดสอบ 3DMark ซึ่งเคยใช้วัดประสิทธิภาพของแล็ปท็อประดับเริ่มต้นและแท็บเล็ต Windows ใช้คุณสมบัติของ DirectX 11 ระดับ 9 ในการแสดงฉากต่อสู้ระหว่างยานอวกาศสองกองใกล้กับดาวเคราะห์น้ำแข็งที่ความละเอียด 1280x720 ยกเลิกไปในเดือนมกราคม 2020 และถูกแทนที่โดย 3DMark Night Raid
Unigine Heaven 3.0
นี่คือการทดสอบ DirectX 11 เก่า ที่ใช้ Unigine ซึ่งเป็นเอนจินเกม 3 มิติจากบริษัทรัสเซียชื่อเดียวกัน แสดงฉากเมืองแฟนตาซียุคกลางที่ตั้งอยู่บนเกาะลอยฟ้าหลายเกาะ เวอร์ชัน 3.0 เปิดตัวในปี 2012 และในปี 2013 ถูกแทนที่ด้วย Heaven 4.0 ซึ่งมีการปรับปรุงเล็กน้อย รวมถึงการใช้เวอร์ชันใหม่ของ Unigine
ประสิทธิภาพในการเล่นเกม
มาดูกันว่าการ์ดจอที่นำมาเปรียบเทียบเหมาะสำหรับการเล่นเกมมากน้อยแค่ไหน โดยผลการทดสอบเกมเฉพาะจะวัดเป็นเฟรมต่อวินาที (FPS)
ค่า FPS เฉลี่ยจากเกมพีซีทั้งหมด
นี่คือค่าเฉลี่ยเฟรมต่อวินาทีจากเกมยอดนิยมหลากหลายเกมในหลายความละเอียด:
Full HD | 84
+82.6%
| 46
−82.6%
|
1440p | 45−50
+66.7%
| 27
−66.7%
|
4K | 24−27
+71.4%
| 14
−71.4%
|
ประสิทธิภาพ FPS ในเกมยอดนิยม
Full HD
Low Preset
Counter-Strike 2 | 95−100
+86.5%
|
50−55
−86.5%
|
Cyberpunk 2077 | 35−40
+80%
|
20−22
−80%
|
Hogwarts Legacy | 30−35
+83.3%
|
18−20
−83.3%
|
Full HD
Medium Preset
Battlefield 5 | 70−75
+56.5%
|
46
−56.5%
|
Counter-Strike 2 | 95−100
+86.5%
|
50−55
−86.5%
|
Cyberpunk 2077 | 35−40
+80%
|
20−22
−80%
|
Far Cry 5 | 55−60
+54.1%
|
37
−54.1%
|
Fortnite | 90−95
−20.4%
|
112
+20.4%
|
Forza Horizon 4 | 70−75
+62.8%
|
40−45
−62.8%
|
Forza Horizon 5 | 50−55
+80%
|
30−33
−80%
|
Hogwarts Legacy | 30−35
+83.3%
|
18−20
−83.3%
|
PLAYERUNKNOWN'S BATTLEGROUNDS | 60−65
+82.9%
|
35−40
−82.9%
|
Valorant | 130−140
+43%
|
90−95
−43%
|
Full HD
High Preset
Battlefield 5 | 70−75
+80%
|
40
−80%
|
Counter-Strike 2 | 95−100
+86.5%
|
50−55
−86.5%
|
Counter-Strike: Global Offensive | 210−220
+50%
|
144
−50%
|
Cyberpunk 2077 | 35−40
+80%
|
20−22
−80%
|
Dota 2 | 100−110
−13.7%
|
116
+13.7%
|
Far Cry 5 | 55−60
+67.6%
|
34
−67.6%
|
Fortnite | 90−95
+89.8%
|
49
−89.8%
|
Forza Horizon 4 | 70−75
+62.8%
|
40−45
−62.8%
|
Forza Horizon 5 | 50−55
+80%
|
30−33
−80%
|
Grand Theft Auto V | 60−65
+42.2%
|
45
−42.2%
|
Hogwarts Legacy | 30−35
+83.3%
|
18−20
−83.3%
|
Metro Exodus | 35−40
+89.5%
|
19
−89.5%
|
PLAYERUNKNOWN'S BATTLEGROUNDS | 60−65
+25.5%
|
51
−25.5%
|
The Witcher 3: Wild Hunt | 67
+91.4%
|
35
−91.4%
|
Valorant | 130−140
+43%
|
90−95
−43%
|
Full HD
Ultra Preset
Battlefield 5 | 70−75
+94.6%
|
37
−94.6%
|
Cyberpunk 2077 | 35−40
+80%
|
20−22
−80%
|
Dota 2 | 100−110
−2%
|
104
+2%
|
Far Cry 5 | 55−60
+83.9%
|
31
−83.9%
|
Forza Horizon 4 | 70−75
+62.8%
|
40−45
−62.8%
|
Hogwarts Legacy | 30−35
+83.3%
|
18−20
−83.3%
|
PLAYERUNKNOWN'S BATTLEGROUNDS | 60−65
+88.2%
|
34
−88.2%
|
The Witcher 3: Wild Hunt | 38
+81%
|
21
−81%
|
Valorant | 130−140
+43%
|
90−95
−43%
|
Full HD
Epic Preset
Fortnite | 90−95
+151%
|
37
−151%
|
1440p
High Preset
Counter-Strike 2 | 35−40
+94.4%
|
18−20
−94.4%
|
Counter-Strike: Global Offensive | 120−130
+33%
|
94
−33%
|
Grand Theft Auto V | 27−30
+107%
|
14−16
−107%
|
Metro Exodus | 21−24
+100%
|
11
−100%
|
PLAYERUNKNOWN'S BATTLEGROUNDS | 160−170
+228%
|
50−55
−228%
|
Valorant | 160−170
+53.2%
|
100−110
−53.2%
|
1440p
Ultra Preset
Battlefield 5 | 45−50
+100%
|
24−27
−100%
|
Cyberpunk 2077 | 16−18
+100%
|
8−9
−100%
|
Far Cry 5 | 35−40
+68.2%
|
22
−68.2%
|
Forza Horizon 4 | 40−45
+79.2%
|
24−27
−79.2%
|
Hogwarts Legacy | 18−20
+80%
|
10−11
−80%
|
The Witcher 3: Wild Hunt | 24−27
+85.7%
|
14−16
−85.7%
|
1440p
Epic Preset
Fortnite | 35−40
+85.7%
|
21−24
−85.7%
|
4K
High Preset
Counter-Strike 2 | 14−16
+367%
|
3−4
−367%
|
Grand Theft Auto V | 30−35
+10.7%
|
28
−10.7%
|
Hogwarts Legacy | 10−12
+120%
|
5−6
−120%
|
Metro Exodus | 12−14
+85.7%
|
7
−85.7%
|
The Witcher 3: Wild Hunt | 24−27
+84.6%
|
13
−84.6%
|
Valorant | 95−100
+86.3%
|
50−55
−86.3%
|
4K
Ultra Preset
Battlefield 5 | 24−27
+108%
|
12−14
−108%
|
Counter-Strike 2 | 14−16
+367%
|
3−4
−367%
|
Cyberpunk 2077 | 7−8
+133%
|
3−4
−133%
|
Dota 2 | 60−65
+62.2%
|
37
−62.2%
|
Far Cry 5 | 18−20
+63.6%
|
11
−63.6%
|
Forza Horizon 4 | 30−33
+76.5%
|
16−18
−76.5%
|
Hogwarts Legacy | 10−12
+120%
|
5−6
−120%
|
PLAYERUNKNOWN'S BATTLEGROUNDS | 16−18
+54.5%
|
11
−54.5%
|
4K
Epic Preset
Fortnite | 16−18
+88.9%
|
9
−88.9%
|
4K
High Preset
Counter-Strike: Global Offensive | 53
+0%
|
53
+0%
|
นี่คือวิธีที่ M5000M และ GTX 1050 Max-Q แข่งขันกันในเกมยอดนิยม:
- M5000M เร็วกว่า 83% ในความละเอียด 1080p
- M5000M เร็วกว่า 67% ในความละเอียด 1440p
- M5000M เร็วกว่า 71% ในความละเอียด 4K
นี่คือช่วงความแตกต่างของประสิทธิภาพที่สังเกตได้จากเกมยอดนิยม:
- ในเกม Counter-Strike 2 ด้วยความละเอียด 4K และการตั้งค่า High Preset อุปกรณ์ M5000M เร็วกว่า 367%
- ในเกม Fortnite ด้วยความละเอียด 1080p และการตั้งค่า Medium Preset อุปกรณ์ GTX 1050 Max-Q เร็วกว่า 20%
โดยรวมแล้ว ในเกมยอดนิยม:
- M5000M เหนือกว่าใน 63การทดสอบ (94%)
- GTX 1050 Max-Q เหนือกว่าใน 3การทดสอบ (4%)
- เสมอกันใน 1การทดสอบ (1%)
สรุปข้อดีและข้อเสีย
คะแนนประสิทธิภาพ | 16.87 | 9.72 |
ความใหม่ล่าสุด | 18 สิงหาคม 2015 | 3 มกราคม 2018 |
จำนวน RAM สูงสุด | 8 จีบี | 4 จีบี |
การผลิตชิปด้วยลิทอกราฟี | 28 nm | 14 nm |
การใช้พลังงาน (TDP) | 100 วัตต์ | 75 วัตต์ |
M5000M มีข้อได้เปรียบ มีคะแนนประสิทธิภาพรวมสูงกว่าถึง 73.6% และ
ในทางกลับกัน GTX 1050 Max-Q มีข้อได้เปรียบ ได้เปรียบด้านอายุการเปิดตัวอยู่ที่ 2 ปี และมีกระบวนการลิทอกราฟีที่ก้าวหน้ากว่าถึง 100%และใช้พลังงานน้อยกว่าถึง 33.3%
Quadro M5000M เป็นตัวเลือกที่เราแนะนำ เนื่องจากมีประสิทธิภาพเหนือกว่า GeForce GTX 1050 Max-Q ในการทดสอบประสิทธิภาพ
โปรดทราบว่า Quadro M5000M เป็นการ์ดจอเวิร์กสเตชันแบบพกพา ในขณะที่ GeForce GTX 1050 Max-Q เป็นการ์ดจอเวิร์กสเตชันแบบพกพาเช่นกัน