GeForce RTX 4070 Ti SUPER เทียบกับ RTX 2070 Max-Q
คะแนนประสิทธิภาพรวม
เราได้เปรียบเทียบ GeForce RTX 2070 Max-Q กับ GeForce RTX 4070 Ti SUPER รวมถึงสเปกและข้อมูลประสิทธิภาพ
RTX 4070 Ti SUPER มีประสิทธิภาพดีกว่า RTX 2070 Max-Q อย่างมหาศาลถึง 175% ตามผลการทดสอบแบบรวมของเรา
รายละเอียดหลัก
สถาปัตยกรรม GPU, กลุ่มตลาด, ความคุ้มค่า และพารามิเตอร์ทั่วไปอื่นๆ ที่ถูกนำมาเปรียบเทียบ
ตำแหน่งในการจัดอันดับประสิทธิภาพ | 197 | 7 |
จัดอันดับตามความนิยม | ไม่ได้อยู่ใน 100 อันดับแรก | 91 |
ความคุ้มค่าเมื่อเทียบกับราคา | ไม่มีข้อมูล | 49.05 |
ประสิทธิภาพการใช้พลังงาน | 25.82 | 19.90 |
สถาปัตยกรรม | Turing (2018−2022) | Ada Lovelace (2022−2024) |
ชื่อรหัส GPU | TU106B | AD103 |
ประเภทตลาด | แล็ปท็อป | เดสก์ท็อป |
วันที่วางจำหน่าย | 29 มกราคม 2019 (เมื่อ 6 ปี ปีที่แล้ว) | 8 มกราคม 2024 (เมื่อ 1 ปี ปีที่แล้ว) |
ราคาเปิดตัว (MSRP) | ไม่มีข้อมูล | $799 |
ความคุ้มค่าเมื่อเทียบกับราคา
อัตราส่วนประสิทธิภาพต่อราคา ยิ่งสูงยิ่งดี
สเปกโดยละเอียด
พารามิเตอร์ทั่วไป เช่น จำนวนเชดเดอร์, ความถี่พื้นฐานและความถี่บูสต์ของ GPU, กระบวนการผลิต, ความเร็วการประมวลผลและการเท็กซ์เจอร์ โปรดทราบว่าการใช้พลังงานของการ์ดจอบางรุ่นอาจเกินกว่า TDP ที่กำหนดไว้ โดยเฉพาะเมื่อทำการโอเวอร์คล็อก
พาธไลน์ / คอร์ CUDA | 2304 | 8448 |
ความเร็วสัญญาณนาฬิกาหลัก | 885 MHz | 2340 MHz |
เพิ่มความเร็วสัญญาณนาฬิกา | 1185 MHz | 2610 MHz |
จำนวนทรานซิสเตอร์ | 10,800 million | 45,900 million |
เทคโนโลยีกระบวนการผลิต | 12 nm | 5 nm |
การใช้พลังงาน (TDP) | 80 Watt | 285 Watt |
อัตราการเติมเท็กซ์เจอร์ | 170.6 | 689.0 |
ประสิทธิภาพการประมวลผลจุดลอยตัว | 5.46 TFLOPS | 44.1 TFLOPS |
ROPs | 64 | 96 |
TMUs | 144 | 264 |
Tensor Cores | 288 | 264 |
Ray Tracing Cores | 36 | 66 |
ฟอร์มแฟกเตอร์และความเข้ากันได้
ข้อมูลเกี่ยวกับความเข้ากันได้กับอุปกรณ์คอมพิวเตอร์อื่นๆ มีประโยชน์เมื่อเลือกการกำหนดค่าคอมพิวเตอร์ในอนาคตหรืออัปเกรดคอมพิวเตอร์ที่มีอยู่ สำหรับการ์ดจอเดสก์ท็อป จะรวมถึงอินเทอร์เฟซและบัส (ความเข้ากันได้กับเมนบอร์ด) และขั้วต่อไฟเพิ่มเติม (ความเข้ากันได้กับหน่วยจ่ายไฟ)
ขนาดแล็ปท็อป | large | ไม่มีข้อมูล |
อินเทอร์เฟซ | PCIe 3.0 x16 | PCIe 4.0 x16 |
ความยาว | ไม่มีข้อมูล | 310 mm |
ความกว้าง | ไม่มีข้อมูล | 3-slot |
ขั้วต่อพลังงานเสริม | None | 1x 16-pin |
ความจุและประเภทของ VRAM
พารามิเตอร์ของ VRAM ที่ติดตั้ง: ประเภท, ขนาด, บัส, ความถี่ และแบนด์วิดท์ที่ได้ GPU แบบรวมไม่มี VRAM เฉพาะ และใช้ส่วนแบ่งของ RAM ระบบแทน
ประเภทหน่วยความจำ | GDDR6 | GDDR6X |
จำนวน RAM สูงสุด | 8 จีบี | 16 จีบี |
ความกว้างบัสหน่วยความจำ | 256 Bit | 256 Bit |
ความเร็วของนาฬิกาหน่วยความจำ | 1500 MHz | 1313 MHz |
384.0 จีบี/s | 672.3 จีบี/s | |
หน่วยความจำที่ใช้ร่วมกัน | - | - |
การเชื่อมต่อและเอาต์พุต
ประเภทและจำนวนของตัวเชื่อมต่อวิดีโอที่มีใน GPU ที่รีวิว โดยทั่วไป ข้อมูลในส่วนนี้จะแม่นยำเฉพาะสำหรับการ์ดเดสก์ท็อปแบบอ้างอิง (หรือที่เรียกว่า Founders Edition สำหรับชิป NVIDIA) ผู้ผลิต OEM อาจเปลี่ยนแปลงจำนวนและประเภทของพอร์ตเอาต์พุต ในขณะที่สำหรับการ์ดโน้ตบุ๊ก ความพร้อมใช้งานของพอร์ตวิดีโอบางประเภทขึ้นอยู่กับรุ่นของแล็ปท็อปมากกว่าตัวการ์ดเอง
ขั้วต่อจอแสดงผล | No outputs | 1x HDMI 2.1, 3x DisplayPort 1.4a |
HDMI | - | + |
รองรับ G-SYNC | + | - |
เทคโนโลยีที่รองรับ
โซลูชันทางเทคโนโลยีที่รองรับ ข้อมูลนี้จะมีประโยชน์หากคุณต้องการเทคโนโลยีเฉพาะสำหรับการใช้งานของคุณ
VR Ready | + | ไม่มีข้อมูล |
ความเข้ากันได้ของ API และ SDK
รายการ API สำหรับการประมวลผล 3D และการประมวลผลทั่วไปที่รองรับ รวมถึงเวอร์ชันเฉพาะ
DirectX | 12 Ultimate (12_1) | 12 Ultimate (12_2) |
รุ่นเชดเดอร์ | 6.5 | 6.7 |
OpenGL | 4.6 | 4.6 |
OpenCL | 1.2 | 3.0 |
Vulkan | 1.2.131 | 1.3 |
CUDA | 7.5 | 8.9 |
DLSS | + | + |
ประสิทธิภาพการทดสอบแบบสังเคราะห์
การเปรียบเทียบผลการทดสอบที่ไม่เกี่ยวกับเกม โดยคะแนนรวมวัดบนมาตราส่วน 0-100 คะแนน
คะแนนรวมของการทดสอบแบบสังเคราะห์
นี่คือคะแนนการทดสอบแบบรวมของเรา
Passmark
นี่คือการทดสอบ GPU ที่พบได้บ่อยที่สุด โดยจะประเมินการ์ดจอภายใต้ภาระงานหลากหลายประเภท โดยให้การทดสอบแยกต่างหาก 4 ครั้งสำหรับ Direct3D เวอร์ชัน 9, 10, 11 และ 12 (เวอร์ชันสุดท้ายใช้ความละเอียด 4K หากทำได้) รวมถึงการทดสอบเพิ่มเติมที่ใช้คุณสมบัติ DirectCompute
3DMark 11 Performance GPU
3DMark 11 เป็นการทดสอบ DirectX 11 เก่าโดย Futuremark ซึ่งประกอบไปด้วย 4 การทดสอบจาก 2 ฉาก: ฉากแรกแสดงการสำรวจซากเรือจมใต้น้ำโดยเรือดำน้ำหลายลำ อีกฉากหนึ่งแสดงวัดร้างลึกเข้าไปในป่าทึบ การทดสอบทั้งหมดใช้แสงวอลุ่ม (Volumetric Lighting) และ Tessellation อย่างหนัก แม้จะใช้ความละเอียด 1280x720 แต่ก็ยังค่อนข้างกินทรัพยากรฮาร์ดแวร์ ยกเลิกไปในเดือนมกราคม 2020 และถูกแทนที่โดย Time Spy
3DMark Fire Strike Graphics
Fire Strike เป็นการทดสอบ DirectX 11 สำหรับเกมพีซี ประกอบด้วยการทดสอบ 2 ฉากที่แสดงการต่อสู้ระหว่างมนุษย์และสิ่งมีชีวิตที่ทำจากลาวา ใช้ความละเอียด 1920x1080 และสามารถแสดงกราฟิกที่สมจริง กินทรัพยากรฮาร์ดแวร์สูง
3DMark Cloud Gate GPU
Cloud Gate เป็นการทดสอบ DirectX 11 ระดับ 10 ที่ล้าสมัย ซึ่งเคยใช้สำหรับพีซีตามบ้านและแล็ปท็อปพื้นฐาน แสดงฉากการปล่อยยานอวกาศผ่านอุปกรณ์เทเลพอร์ตอวกาศประหลาด ด้วยความละเอียด 1280x720 เช่นเดียวกับ Ice Storm Benchmark ถูกยกเลิกในเดือนมกราคม 2020 และถูกแทนที่โดย 3DMark Night Raid
3DMark Ice Storm GPU
Ice Storm Graphics เป็นการทดสอบล้าสมัยในชุดการทดสอบ 3DMark ซึ่งเคยใช้วัดประสิทธิภาพของแล็ปท็อประดับเริ่มต้นและแท็บเล็ต Windows ใช้คุณสมบัติของ DirectX 11 ระดับ 9 ในการแสดงฉากต่อสู้ระหว่างยานอวกาศสองกองใกล้กับดาวเคราะห์น้ำแข็งที่ความละเอียด 1280x720 ยกเลิกไปในเดือนมกราคม 2020 และถูกแทนที่โดย 3DMark Night Raid
ประสิทธิภาพในการเล่นเกม
มาดูกันว่าการ์ดจอที่นำมาเปรียบเทียบเหมาะสำหรับการเล่นเกมมากน้อยแค่ไหน โดยผลการทดสอบเกมเฉพาะจะวัดเป็นเฟรมต่อวินาที (FPS)
ค่า FPS เฉลี่ยจากเกมพีซีทั้งหมด
นี่คือค่าเฉลี่ยเฟรมต่อวินาทีจากเกมยอดนิยมหลากหลายเกมในหลายความละเอียด:
Full HD | 100
−128%
| 228
+128%
|
1440p | 60
−150%
| 150
+150%
|
4K | 39
−123%
| 87
+123%
|
ต้นทุนต่อเฟรม, $
1080p | ไม่มีข้อมูล | 3.50 |
1440p | ไม่มีข้อมูล | 5.33 |
4K | ไม่มีข้อมูล | 9.18 |
ประสิทธิภาพ FPS ในเกมยอดนิยม
Full HD
Low Preset
Atomic Heart | 80−85
−186%
|
220−230
+186%
|
Counter-Strike 2 | 55−60
−226%
|
189
+226%
|
Cyberpunk 2077 | 60−65
−218%
|
197
+218%
|
Full HD
Medium Preset
Atomic Heart | 80−85
−186%
|
220−230
+186%
|
Battlefield 5 | 92
−110%
|
190−200
+110%
|
Counter-Strike 2 | 55−60
−226%
|
189
+226%
|
Cyberpunk 2077 | 60−65
−216%
|
196
+216%
|
Far Cry 5 | 103
−97.1%
|
203
+97.1%
|
Fortnite | 122
−148%
|
300−350
+148%
|
Forza Horizon 4 | 121
−161%
|
300−350
+161%
|
Forza Horizon 5 | 80−85
−168%
|
210−220
+168%
|
PLAYERUNKNOWN'S BATTLEGROUNDS | 148
−19.6%
|
170−180
+19.6%
|
Valorant | 180−190
−159%
|
450−500
+159%
|
Full HD
High Preset
Atomic Heart | 80−85
−186%
|
220−230
+186%
|
Battlefield 5 | 88
−119%
|
190−200
+119%
|
Counter-Strike 2 | 55−60
−195%
|
171
+195%
|
Counter-Strike: Global Offensive | 270−280
−3%
|
270−280
+3%
|
Cyberpunk 2077 | 60−65
−177%
|
172
+177%
|
Dota 2 | 127
−136%
|
300−310
+136%
|
Far Cry 5 | 95
−107%
|
197
+107%
|
Fortnite | 115
−163%
|
300−350
+163%
|
Forza Horizon 4 | 118
−168%
|
300−350
+168%
|
Forza Horizon 5 | 80−85
−168%
|
210−220
+168%
|
Grand Theft Auto V | 90
−93.3%
|
174
+93.3%
|
Metro Exodus | 61
−221%
|
196
+221%
|
PLAYERUNKNOWN'S BATTLEGROUNDS | 128
−38.3%
|
170−180
+38.3%
|
The Witcher 3: Wild Hunt | 122
−252%
|
430
+252%
|
Valorant | 180−190
−159%
|
450−500
+159%
|
Full HD
Ultra Preset
Battlefield 5 | 89
−117%
|
190−200
+117%
|
Counter-Strike 2 | 55−60
−159%
|
150
+159%
|
Cyberpunk 2077 | 60−65
−155%
|
158
+155%
|
Dota 2 | 121
−148%
|
300−310
+148%
|
Far Cry 5 | 90
−109%
|
188
+109%
|
Forza Horizon 4 | 98
−222%
|
300−350
+222%
|
Forza Horizon 5 | 80−85
−172%
|
220−230
+172%
|
PLAYERUNKNOWN'S BATTLEGROUNDS | 93
−90.3%
|
170−180
+90.3%
|
The Witcher 3: Wild Hunt | 64
−228%
|
210
+228%
|
Valorant | 129
−265%
|
450−500
+265%
|
Full HD
Epic Preset
Fortnite | 100
−202%
|
300−350
+202%
|
1440p
High Preset
Counter-Strike: Global Offensive | 190−200
−165%
|
500−550
+165%
|
Grand Theft Auto V | 50−55
−192%
|
155
+192%
|
Metro Exodus | 35−40
−236%
|
131
+236%
|
PLAYERUNKNOWN'S BATTLEGROUNDS | 170−180
+0%
|
170−180
+0%
|
Valorant | 220−230
−119%
|
450−500
+119%
|
1440p
Ultra Preset
Battlefield 5 | 75
−161%
|
190−200
+161%
|
Counter-Strike 2 | 24−27
−160%
|
65−70
+160%
|
Cyberpunk 2077 | 27−30
−259%
|
104
+259%
|
Far Cry 5 | 66
−183%
|
187
+183%
|
Forza Horizon 4 | 75−80
−276%
|
280−290
+276%
|
Forza Horizon 5 | 50−55
−160%
|
130−140
+160%
|
The Witcher 3: Wild Hunt | 45−50
−224%
|
159
+224%
|
1440p
Epic Preset
Fortnite | 76
−98.7%
|
150−160
+98.7%
|
4K
High Preset
Atomic Heart | 21−24
−250%
|
75−80
+250%
|
Counter-Strike 2 | 12−14
−454%
|
72
+454%
|
Grand Theft Auto V | 69
−164%
|
182
+164%
|
Metro Exodus | 22
−282%
|
84
+282%
|
The Witcher 3: Wild Hunt | 45
−320%
|
180−190
+320%
|
Valorant | 160−170
−98.8%
|
300−350
+98.8%
|
4K
Ultra Preset
Battlefield 5 | 42
−224%
|
130−140
+224%
|
Counter-Strike 2 | 12−14
−69.2%
|
22
+69.2%
|
Cyberpunk 2077 | 12−14
−285%
|
50
+285%
|
Dota 2 | 93
−169%
|
250−260
+169%
|
Far Cry 5 | 33
−261%
|
119
+261%
|
Forza Horizon 4 | 50−55
−396%
|
240−250
+396%
|
Forza Horizon 5 | 27−30
−168%
|
75−80
+168%
|
PLAYERUNKNOWN'S BATTLEGROUNDS | 36
−167%
|
95−100
+167%
|
4K
Epic Preset
Fortnite | 32
−147%
|
75−80
+147%
|
1440p
High Preset
Counter-Strike 2 | 95−100
+0%
|
95−100
+0%
|
นี่คือวิธีที่ RTX 2070 Max-Q และ RTX 4070 Ti SUPER แข่งขันกันในเกมยอดนิยม:
- RTX 4070 Ti SUPER เร็วกว่า 128% ในความละเอียด 1080p
- RTX 4070 Ti SUPER เร็วกว่า 150% ในความละเอียด 1440p
- RTX 4070 Ti SUPER เร็วกว่า 123% ในความละเอียด 4K
นี่คือช่วงความแตกต่างของประสิทธิภาพที่สังเกตได้จากเกมยอดนิยม:
- ในเกม Counter-Strike 2 ด้วยความละเอียด 4K และการตั้งค่า High Preset อุปกรณ์ RTX 4070 Ti SUPER เร็วกว่า 454%
โดยรวมแล้ว ในเกมยอดนิยม:
- RTX 4070 Ti SUPER เหนือกว่าใน 59การทดสอบ (97%)
- เสมอกันใน 2การทดสอบ (3%)
สรุปข้อดีและข้อเสีย
คะแนนประสิทธิภาพ | 29.94 | 82.19 |
ความใหม่ล่าสุด | 29 มกราคม 2019 | 8 มกราคม 2024 |
จำนวน RAM สูงสุด | 8 จีบี | 16 จีบี |
การผลิตชิปด้วยลิทอกราฟี | 12 nm | 5 nm |
การใช้พลังงาน (TDP) | 80 วัตต์ | 285 วัตต์ |
RTX 2070 Max-Q มีข้อได้เปรียบ ใช้พลังงานน้อยกว่าถึง 256.3%
ในทางกลับกัน RTX 4070 Ti SUPER มีข้อได้เปรียบ มีคะแนนประสิทธิภาพรวมสูงกว่าถึง 174.5% และได้เปรียบด้านอายุการเปิดตัวอยู่ที่ 4 ปี และและมีกระบวนการลิทอกราฟีที่ก้าวหน้ากว่าถึง 140%
GeForce RTX 4070 Ti SUPER เป็นตัวเลือกที่เราแนะนำ เนื่องจากมีประสิทธิภาพเหนือกว่า GeForce RTX 2070 Max-Q ในการทดสอบประสิทธิภาพ
โปรดทราบว่า GeForce RTX 2070 Max-Q เป็นการ์ดจอโน้ตบุ๊ก ในขณะที่ GeForce RTX 4070 Ti SUPER เป็นการ์ดจอเดสก์ท็อป