Quadro K2100M เทียบกับ GeForce GTX 1080
คะแนนประสิทธิภาพรวม
เราได้เปรียบเทียบ GeForce GTX 1080 กับ Quadro K2100M รวมถึงสเปกและข้อมูลประสิทธิภาพ
GTX 1080 มีประสิทธิภาพดีกว่า K2100M อย่างมหาศาลถึง 1041% ตามผลการทดสอบแบบรวมของเรา
รายละเอียดหลัก
สถาปัตยกรรม GPU, กลุ่มตลาด, ความคุ้มค่า และพารามิเตอร์ทั่วไปอื่นๆ ที่ถูกนำมาเปรียบเทียบ
| ตำแหน่งในการจัดอันดับประสิทธิภาพ | 137 | 786 |
| จัดอันดับตามความนิยม | 83 | ไม่ได้อยู่ใน 100 อันดับแรก |
| ความคุ้มค่าเมื่อเทียบกับราคา | 17.41 | 0.63 |
| ประสิทธิภาพการใช้พลังงาน | 15.92 | 4.57 |
| สถาปัตยกรรม | Pascal (2016−2021) | Kepler (2012−2018) |
| ชื่อรหัส GPU | GP104 | GK106 |
| ประเภทตลาด | เดสก์ท็อป | เวิร์กสเตชันแบบพกพา |
| วันที่วางจำหน่าย | 27 พฤษภาคม 2016 (เมื่อ 9 ปี ปีที่แล้ว) | 23 กรกฎาคม 2013 (เมื่อ 12 ปี ปีที่แล้ว) |
| ราคาเปิดตัว (MSRP) | $599 | $84.95 |
ความคุ้มค่าเมื่อเทียบกับราคา
อัตราส่วนประสิทธิภาพต่อราคา ยิ่งสูงยิ่งดี
GTX 1080 มีความคุ้มค่ามากกว่า K2100M อยู่ 2663%
กราฟแบบกระจายประสิทธิภาพต่อราคา
สเปกโดยละเอียด
พารามิเตอร์ทั่วไป เช่น จำนวนเชดเดอร์, ความถี่พื้นฐานและความถี่บูสต์ของ GPU, กระบวนการผลิต, ความเร็วการประมวลผลและการเท็กซ์เจอร์ โปรดทราบว่าการใช้พลังงานของการ์ดจอบางรุ่นอาจเกินกว่า TDP ที่กำหนดไว้ โดยเฉพาะเมื่อทำการโอเวอร์คล็อก
| พาธไลน์ / คอร์ CUDA | 2560 | 576 |
| ความเร็วสัญญาณนาฬิกาหลัก | 1607 MHz | 667 MHz |
| เพิ่มความเร็วสัญญาณนาฬิกา | 1733 MHz | ไม่มีข้อมูล |
| จำนวนทรานซิสเตอร์ | 7,200 million | 2,540 million |
| เทคโนโลยีกระบวนการผลิต | 16 nm | 28 nm |
| การใช้พลังงาน (TDP) | 180 Watt | 55 Watt |
| อุณหภูมิ GPU สูงสุด | 94 °C | ไม่มีข้อมูล |
| อัตราการเติมเท็กซ์เจอร์ | 277.3 | 32.02 |
| ประสิทธิภาพการประมวลผลจุดลอยตัว | 8.873 TFLOPS | 0.7684 TFLOPS |
| ROPs | 64 | 16 |
| TMUs | 160 | 48 |
| L1 Cache | 960 เคบี | 48 เคบี |
| L2 Cache | 2 เอ็มบี | 256 เคบี |
ฟอร์มแฟกเตอร์และความเข้ากันได้
ข้อมูลเกี่ยวกับความเข้ากันได้กับอุปกรณ์คอมพิวเตอร์อื่นๆ มีประโยชน์เมื่อเลือกการกำหนดค่าคอมพิวเตอร์ในอนาคตหรืออัปเกรดคอมพิวเตอร์ที่มีอยู่ สำหรับการ์ดจอเดสก์ท็อป จะรวมถึงอินเทอร์เฟซและบัส (ความเข้ากันได้กับเมนบอร์ด) และขั้วต่อไฟเพิ่มเติม (ความเข้ากันได้กับหน่วยจ่ายไฟ)
| ขนาดแล็ปท็อป | ไม่มีข้อมูล | medium sized |
| การรองรับบัส | PCIe 3.0 | ไม่มีข้อมูล |
| อินเทอร์เฟซ | PCIe 3.0 x16 | MXM-A (3.0) |
| ความยาว | 267 mm | ไม่มีข้อมูล |
| ความสูง | 11.1 ซม | ไม่มีข้อมูล |
| ความกว้าง | 2-slot | ไม่มีข้อมูล |
| กำลังไฟระบบที่แนะนำ (PSU) | 500 วัตต์ | ไม่มีข้อมูล |
| ขั้วต่อพลังงานเสริม | 1x 8-pin | ไม่มีข้อมูล |
| ตัวเลือก SLI | + | - |
ความจุและประเภทของ VRAM
พารามิเตอร์ของ VRAM ที่ติดตั้ง: ประเภท, ขนาด, บัส, ความถี่ และแบนด์วิดท์ที่ได้ GPU แบบรวมไม่มี VRAM เฉพาะ และใช้ส่วนแบ่งของ RAM ระบบแทน
| ประเภทหน่วยความจำ | GDDR5X | GDDR5 |
| จำนวน RAM สูงสุด | 8 จีบี | 2 จีบี |
| ความกว้างบัสหน่วยความจำ | 256 Bit | 128 Bit |
| ความเร็วของนาฬิกาหน่วยความจำ | 10 จีบี/s | 752 MHz |
| 320 จีบี/s | 48.0 จีบี/s | |
| หน่วยความจำที่ใช้ร่วมกัน | - | - |
การเชื่อมต่อและเอาต์พุต
ประเภทและจำนวนของตัวเชื่อมต่อวิดีโอที่มีใน GPU ที่รีวิว โดยทั่วไป ข้อมูลในส่วนนี้จะแม่นยำเฉพาะสำหรับการ์ดเดสก์ท็อปแบบอ้างอิง (หรือที่เรียกว่า Founders Edition สำหรับชิป NVIDIA) ผู้ผลิต OEM อาจเปลี่ยนแปลงจำนวนและประเภทของพอร์ตเอาต์พุต ในขณะที่สำหรับการ์ดโน้ตบุ๊ก ความพร้อมใช้งานของพอร์ตวิดีโอบางประเภทขึ้นอยู่กับรุ่นของแล็ปท็อปมากกว่าตัวการ์ดเอง
| ขั้วต่อจอแสดงผล | DP 1.42, HDMI 2.0b, DL-DVI | No outputs |
| รองรับหลายจอภาพ | + | ไม่มีข้อมูล |
| HDMI | + | - |
| Display Port | ไม่มีข้อมูล | 1.2 |
| รองรับ G-SYNC | + | - |
เทคโนโลยีที่รองรับ
โซลูชันทางเทคโนโลยีที่รองรับ ข้อมูลนี้จะมีประโยชน์หากคุณต้องการเทคโนโลยีเฉพาะสำหรับการใช้งานของคุณ
| GPU Boost | 3.0 | ไม่มีข้อมูล |
| Optimus | - | + |
| 3D Vision Pro | ไม่มีข้อมูล | + |
| Mosaic | ไม่มีข้อมูล | + |
| VR Ready | + | ไม่มีข้อมูล |
| nView Display Management | ไม่มีข้อมูล | + |
| Optimus | ไม่มีข้อมูล | + |
| Ansel | + | ไม่มีข้อมูล |
ความเข้ากันได้ของ API และ SDK
รายการ API สำหรับการประมวลผล 3D และการประมวลผลทั่วไปที่รองรับ รวมถึงเวอร์ชันเฉพาะ
| DirectX | 12 (12_1) | 12 |
| รุ่นเชดเดอร์ | 6.4 | 5.1 |
| OpenGL | 4.5 | 4.5 |
| OpenCL | 1.2 | 1.2 |
| Vulkan | 1.2.131 | + |
| CUDA | + | + |
ประสิทธิภาพการทดสอบแบบสังเคราะห์
การเปรียบเทียบผลการทดสอบที่ไม่เกี่ยวกับเกม โดยคะแนนรวมวัดบนมาตราส่วน 0-100 คะแนน
คะแนนรวมของการทดสอบแบบสังเคราะห์
นี่คือคะแนนการทดสอบแบบรวมของเรา
Passmark
นี่คือการทดสอบ GPU ที่พบได้บ่อยที่สุด โดยจะประเมินการ์ดจอภายใต้ภาระงานหลากหลายประเภท โดยให้การทดสอบแยกต่างหาก 4 ครั้งสำหรับ Direct3D เวอร์ชัน 9, 10, 11 และ 12 (เวอร์ชันสุดท้ายใช้ความละเอียด 4K หากทำได้) รวมถึงการทดสอบเพิ่มเติมที่ใช้คุณสมบัติ DirectCompute
3DMark 11 Performance GPU
3DMark 11 เป็นการทดสอบ DirectX 11 เก่าโดย Futuremark ซึ่งประกอบไปด้วย 4 การทดสอบจาก 2 ฉาก: ฉากแรกแสดงการสำรวจซากเรือจมใต้น้ำโดยเรือดำน้ำหลายลำ อีกฉากหนึ่งแสดงวัดร้างลึกเข้าไปในป่าทึบ การทดสอบทั้งหมดใช้แสงวอลุ่ม (Volumetric Lighting) และ Tessellation อย่างหนัก แม้จะใช้ความละเอียด 1280x720 แต่ก็ยังค่อนข้างกินทรัพยากรฮาร์ดแวร์ ยกเลิกไปในเดือนมกราคม 2020 และถูกแทนที่โดย Time Spy
3DMark Vantage Performance
3DMark Vantage เป็นการทดสอบ DirectX 10 เก่าที่ใช้ความละเอียด 1280x1024 โดยมีฉากหลัก 2 ฉาก: ฉากแรกแสดงเด็กผู้หญิงคนหนึ่งหนีออกจากฐานทัพในถ้ำกลางทะเล และอีกฉากหนึ่งแสดงยานอวกาศบุกโจมตีดาวเคราะห์ที่ไร้การป้องกัน ยกเลิกไปในเดือนเมษายน 2017 และแนะนำให้ใช้การทดสอบ Time Spy แทน
3DMark Fire Strike Graphics
Fire Strike เป็นการทดสอบ DirectX 11 สำหรับเกมพีซี ประกอบด้วยการทดสอบ 2 ฉากที่แสดงการต่อสู้ระหว่างมนุษย์และสิ่งมีชีวิตที่ทำจากลาวา ใช้ความละเอียด 1920x1080 และสามารถแสดงกราฟิกที่สมจริง กินทรัพยากรฮาร์ดแวร์สูง
3DMark Cloud Gate GPU
Cloud Gate เป็นการทดสอบ DirectX 11 ระดับ 10 ที่ล้าสมัย ซึ่งเคยใช้สำหรับพีซีตามบ้านและแล็ปท็อปพื้นฐาน แสดงฉากการปล่อยยานอวกาศผ่านอุปกรณ์เทเลพอร์ตอวกาศประหลาด ด้วยความละเอียด 1280x720 เช่นเดียวกับ Ice Storm Benchmark ถูกยกเลิกในเดือนมกราคม 2020 และถูกแทนที่โดย 3DMark Night Raid
GeekBench 5 OpenCL
Geekbench 5 เป็นการทดสอบกราฟิกการ์ดที่แพร่หลาย ประกอบไปด้วยสถานการณ์การทดสอบทั้งหมด 11 รูปแบบ แต่ละรูปแบบอาศัยการประมวลผลของ GPU โดยตรง โดยไม่มีการเรนเดอร์ 3 มิติ การทดสอบนี้ใช้ OpenCL API โดย Khronos Group
GeekBench 5 Vulkan
Geekbench 5 เป็นการทดสอบกราฟิกการ์ดที่แพร่หลาย ประกอบไปด้วยสถานการณ์การทดสอบทั้งหมด 11 รูปแบบ แต่ละรูปแบบอาศัยการประมวลผลของ GPU โดยตรง โดยไม่มีการเรนเดอร์ 3 มิติ การทดสอบนี้ใช้ Vulkan API โดย AMD & Khronos Group
GeekBench 5 CUDA
Geekbench 5 เป็นการทดสอบกราฟิกการ์ดที่แพร่หลาย ประกอบไปด้วยสถานการณ์การทดสอบทั้งหมด 11 รูปแบบ แต่ละรูปแบบอาศัยการประมวลผลของ GPU โดยตรง โดยไม่มีการเรนเดอร์ 3 มิติ การทดสอบนี้ใช้ CUDA API โดย NVIDIA
Unigine Heaven 3.0
นี่คือการทดสอบ DirectX 11 เก่า ที่ใช้ Unigine ซึ่งเป็นเอนจินเกม 3 มิติจากบริษัทรัสเซียชื่อเดียวกัน แสดงฉากเมืองแฟนตาซียุคกลางที่ตั้งอยู่บนเกาะลอยฟ้าหลายเกาะ เวอร์ชัน 3.0 เปิดตัวในปี 2012 และในปี 2013 ถูกแทนที่ด้วย Heaven 4.0 ซึ่งมีการปรับปรุงเล็กน้อย รวมถึงการใช้เวอร์ชันใหม่ของ Unigine
SPECviewperf 12 - specvp12 maya-04
SPECviewperf 12 - specvp12 sw-03
SPECviewperf 12 - specvp12 snx-02
SPECviewperf 12 - specvp12 catia-04
SPECviewperf 12 - specvp12 creo-01
SPECviewperf 12 - specvp12 mediacal-01
SPECviewperf 12 - specvp12 showcase-01
SPECviewperf 12 - specvp12 energy-01
SPECviewperf 12 - Showcase
SPECviewperf 12 - Maya
ส่วนนี้ของการทดสอบ SPECviewperf 12 สำหรับเวิร์กสเตชัน ใช้เอนจิน Autodesk Maya 13 เพื่อเรนเดอร์ฉากโรงไฟฟ้าพลังงานของซูเปอร์ฮีโร่ ซึ่งประกอบด้วยโพลีกอนมากกว่า 700,000 ชิ้น ในโหมดที่แตกต่างกันถึง 6 โหมด
SPECviewperf 12 - Catia
SPECviewperf 12 - Solidworks
SPECviewperf 12 - Siemens NX
SPECviewperf 12 - Creo
SPECviewperf 12 - Medical
SPECviewperf 12 - Energy
ประสิทธิภาพในการเล่นเกม
มาดูกันว่าการ์ดจอที่นำมาเปรียบเทียบเหมาะสำหรับการเล่นเกมมากน้อยแค่ไหน โดยผลการทดสอบเกมเฉพาะจะวัดเป็นเฟรมต่อวินาที (FPS)
ค่า FPS เฉลี่ยจากเกมพีซีทั้งหมด
นี่คือค่าเฉลี่ยเฟรมต่อวินาทีจากเกมยอดนิยมหลากหลายเกมในหลายความละเอียด:
| Full HD | 126
+425%
| 24
−425%
|
| 1440p | 77
+1183%
| 6−7
−1183%
|
| 4K | 59
+1080%
| 5−6
−1080%
|
ต้นทุนต่อเฟรม, $
| 1080p | 4.75
−34.3%
| 3.54
+34.3%
|
| 1440p | 7.78
+82%
| 14.16
−82%
|
| 4K | 10.15
+67.3%
| 16.99
−67.3%
|
ประสิทธิภาพ FPS ในเกมยอดนิยม
Full HD
Low
| Counter-Strike 2 | 200−210
+1642%
|
12−14
−1642%
|
| Cyberpunk 2077 | 85−90
+1143%
|
7−8
−1143%
|
Full HD
Medium
| Battlefield 5 | 166
+1283%
|
12−14
−1283%
|
| Counter-Strike 2 | 200−210
+1642%
|
12−14
−1642%
|
| Cyberpunk 2077 | 85−90
+1143%
|
7−8
−1143%
|
| Escape from Tarkov | 120−130
+900%
|
12−14
−900%
|
| Far Cry 5 | 118
+1080%
|
10−11
−1080%
|
| Fortnite | 285
+1483%
|
18−20
−1483%
|
| Forza Horizon 4 | 140
+775%
|
16−18
−775%
|
| Forza Horizon 5 | 110−120
+1388%
|
8−9
−1388%
|
| PLAYERUNKNOWN'S BATTLEGROUNDS | 123
+720%
|
14−16
−720%
|
| Valorant | 220−230
+353%
|
45−50
−353%
|
Full HD
High
| Battlefield 5 | 142
+1083%
|
12−14
−1083%
|
| Counter-Strike 2 | 200−210
+1642%
|
12−14
−1642%
|
| Counter-Strike: Global Offensive | 272
+346%
|
60−65
−346%
|
| Cyberpunk 2077 | 85−90
+1143%
|
7−8
−1143%
|
| Dota 2 | 102
+229%
|
30−35
−229%
|
| Escape from Tarkov | 120−130
+900%
|
12−14
−900%
|
| Far Cry 5 | 113
+1030%
|
10−11
−1030%
|
| Fortnite | 199
+1006%
|
18−20
−1006%
|
| Forza Horizon 4 | 137
+756%
|
16−18
−756%
|
| Forza Horizon 5 | 110−120
+1388%
|
8−9
−1388%
|
| Grand Theft Auto V | 119
+1222%
|
9−10
−1222%
|
| Metro Exodus | 74
+1133%
|
6−7
−1133%
|
| PLAYERUNKNOWN'S BATTLEGROUNDS | 113
+653%
|
14−16
−653%
|
| The Witcher 3: Wild Hunt | 74
+722%
|
9
−722%
|
| Valorant | 220−230
+353%
|
45−50
−353%
|
Full HD
Ultra
| Battlefield 5 | 123
+925%
|
12−14
−925%
|
| Cyberpunk 2077 | 85−90
+1143%
|
7−8
−1143%
|
| Dota 2 | 100
+223%
|
30−35
−223%
|
| Escape from Tarkov | 120−130
+900%
|
12−14
−900%
|
| Far Cry 5 | 104
+940%
|
10−11
−940%
|
| Forza Horizon 4 | 112
+600%
|
16−18
−600%
|
| PLAYERUNKNOWN'S BATTLEGROUNDS | 97
+547%
|
14−16
−547%
|
| The Witcher 3: Wild Hunt | 81
+636%
|
10−12
−636%
|
| Valorant | 220−230
+353%
|
45−50
−353%
|
Full HD
Epic
| Fortnite | 146
+711%
|
18−20
−711%
|
1440p
High
| Counter-Strike 2 | 90−95
+1243%
|
7−8
−1243%
|
| Counter-Strike: Global Offensive | 260−270
+952%
|
24−27
−952%
|
| Grand Theft Auto V | 72
+7100%
|
1−2
−7100%
|
| Metro Exodus | 45
+4400%
|
1−2
−4400%
|
| PLAYERUNKNOWN'S BATTLEGROUNDS | 170−180
+503%
|
27−30
−503%
|
| Valorant | 250−260
+670%
|
30−35
−670%
|
1440p
Ultra
| Battlefield 5 | 98
+1125%
|
8−9
−1125%
|
| Cyberpunk 2077 | 40−45
+2050%
|
2−3
−2050%
|
| Escape from Tarkov | 90−95
+1400%
|
6−7
−1400%
|
| Far Cry 5 | 77
+1183%
|
6−7
−1183%
|
| Forza Horizon 4 | 93
+1063%
|
8−9
−1063%
|
| The Witcher 3: Wild Hunt | 70−75
+1300%
|
5−6
−1300%
|
1440p
Epic
| Fortnite | 95
+1483%
|
6−7
−1483%
|
4K
High
| Counter-Strike 2 | 40−45
+1333%
|
3−4
−1333%
|
| Grand Theft Auto V | 74
+393%
|
14−16
−393%
|
| Metro Exodus | 28
+1300%
|
2−3
−1300%
|
| The Witcher 3: Wild Hunt | 56
+1300%
|
4−5
−1300%
|
| Valorant | 230−240
+1338%
|
16−18
−1338%
|
4K
Ultra
| Battlefield 5 | 53
+1225%
|
4−5
−1225%
|
| Counter-Strike 2 | 40−45
+1333%
|
3−4
−1333%
|
| Cyberpunk 2077 | 20−22 | 0−1 |
| Dota 2 | 129
+1190%
|
10−11
−1190%
|
| Escape from Tarkov | 45−50
+2200%
|
2−3
−2200%
|
| Far Cry 5 | 42
+2000%
|
2−3
−2000%
|
| Forza Horizon 4 | 65
+2067%
|
3−4
−2067%
|
| PLAYERUNKNOWN'S BATTLEGROUNDS | 34
+750%
|
4−5
−750%
|
4K
Epic
| Fortnite | 46
+1050%
|
4−5
−1050%
|
นี่คือวิธีที่ GTX 1080 และ K2100M แข่งขันกันในเกมยอดนิยม:
- GTX 1080 เร็วกว่า 425% ในความละเอียด 1080p
- GTX 1080 เร็วกว่า 1183% ในความละเอียด 1440p
- GTX 1080 เร็วกว่า 1080% ในความละเอียด 4K
นี่คือช่วงความแตกต่างของประสิทธิภาพที่สังเกตได้จากเกมยอดนิยม:
- ในเกม Grand Theft Auto V ด้วยความละเอียด 1440p และการตั้งค่า High Preset อุปกรณ์ GTX 1080 เร็วกว่า 7100%
โดยรวมแล้ว ในเกมยอดนิยม:
- โดยไม่มีข้อยกเว้น GTX 1080 เหนือกว่า K2100M ในการทดสอบทั้ง 57 ครั้งของเรา
สรุปข้อดีและข้อเสีย
| คะแนนประสิทธิภาพ | 37.30 | 3.27 |
| ความใหม่ล่าสุด | 27 พฤษภาคม 2016 | 23 กรกฎาคม 2013 |
| จำนวน RAM สูงสุด | 8 จีบี | 2 จีบี |
| การผลิตชิปด้วยลิทอกราฟี | 16 nm | 28 nm |
| การใช้พลังงาน (TDP) | 180 วัตต์ | 55 วัตต์ |
GTX 1080 มีข้อได้เปรียบ มีคะแนนประสิทธิภาพรวมสูงกว่าถึง 1040.7% และได้เปรียบด้านอายุการเปิดตัวอยู่ที่ 2 ปี และและมีกระบวนการลิทอกราฟีที่ก้าวหน้ากว่าถึง 75%
ในทางกลับกัน K2100M มีข้อได้เปรียบ ใช้พลังงานน้อยกว่าถึง 227.3%
GeForce GTX 1080 เป็นตัวเลือกที่เราแนะนำ เนื่องจากมีประสิทธิภาพเหนือกว่า Quadro K2100M ในการทดสอบประสิทธิภาพ
โปรดทราบว่า GeForce GTX 1080 เป็นการ์ดจอเดสก์ท็อป ในขณะที่ Quadro K2100M เป็นการ์ดจอเวิร์กสเตชันแบบพกพา
