GeForce GTX 660M เทียบกับ Radeon RX Vega 8 (Ryzen 2000/3000)
คะแนนประสิทธิภาพรวม
เราได้เปรียบเทียบ Radeon RX Vega 8 (Ryzen 2000/3000) และ GeForce GTX 660M โดยครอบคลุมสเปกและผลการทดสอบที่เกี่ยวข้องทั้งหมด
RX Vega 8 (Ryzen 2000/3000) มีประสิทธิภาพดีกว่า GTX 660M อย่างมาก 20% ตามผลการทดสอบแบบรวมของเรา
รายละเอียดหลัก
สถาปัตยกรรม GPU, กลุ่มตลาด, ความคุ้มค่า และพารามิเตอร์ทั่วไปอื่นๆ ที่ถูกนำมาเปรียบเทียบ
ตำแหน่งในการจัดอันดับประสิทธิภาพ | 662 | 711 |
จัดอันดับตามความนิยม | 36 | ไม่ได้อยู่ใน 100 อันดับแรก |
ประสิทธิภาพการใช้พลังงาน | 20.77 | 5.20 |
สถาปัตยกรรม | Vega (2017−2020) | Kepler (2012−2018) |
ชื่อรหัส GPU | Vega Raven Ridge | GK107 |
ประเภทตลาด | แล็ปท็อป | แล็ปท็อป |
วันที่วางจำหน่าย | 26 ตุลาคม 2017 (เมื่อ 7 ปี ปีที่แล้ว) | 22 มีนาคม 2012 (เมื่อ 12 ปี ปีที่แล้ว) |
สเปกโดยละเอียด
พารามิเตอร์ทั่วไป เช่น จำนวนเชดเดอร์, ความถี่พื้นฐานและความถี่บูสต์ของ GPU, กระบวนการผลิต, ความเร็วการประมวลผลและการเท็กซ์เจอร์ โปรดทราบว่าการใช้พลังงานของการ์ดจอบางรุ่นอาจเกินกว่า TDP ที่กำหนดไว้ โดยเฉพาะเมื่อทำการโอเวอร์คล็อก
พาธไลน์ / คอร์ CUDA | 512 | 384 |
ความเร็วสัญญาณนาฬิกาหลัก | 300 MHz | 835 MHz |
เพิ่มความเร็วสัญญาณนาฬิกา | 1200 MHz | 950 MHz |
จำนวนทรานซิสเตอร์ | 9,800 million | 1,270 million |
เทคโนโลยีกระบวนการผลิต | 14 nm | 28 nm |
การใช้พลังงาน (TDP) | 15 Watt | 50 Watt |
อัตราการเติมเท็กซ์เจอร์ | 57.60 | 30.40 |
ประสิทธิภาพการประมวลผลจุดลอยตัว | 1.843 TFLOPS | 0.7296 TFLOPS |
ROPs | 8 | 16 |
TMUs | 32 | 32 |
ฟอร์มแฟกเตอร์และความเข้ากันได้
ข้อมูลเกี่ยวกับความเข้ากันได้กับอุปกรณ์คอมพิวเตอร์อื่นๆ มีประโยชน์เมื่อเลือกการกำหนดค่าคอมพิวเตอร์ในอนาคตหรืออัปเกรดคอมพิวเตอร์ที่มีอยู่ สำหรับการ์ดจอเดสก์ท็อป จะรวมถึงอินเทอร์เฟซและบัส (ความเข้ากันได้กับเมนบอร์ด) และขั้วต่อไฟเพิ่มเติม (ความเข้ากันได้กับหน่วยจ่ายไฟ)
ขนาดแล็ปท็อป | ไม่มีข้อมูล | large |
การรองรับบัส | ไม่มีข้อมูล | PCI Express 2.0, PCI Express 3.0 |
อินเทอร์เฟซ | IGP | MXM-B (3.0) |
ขั้วต่อพลังงานเสริม | None | ไม่มีข้อมูล |
ตัวเลือก SLI | - | + |
ความจุและประเภทของ VRAM
พารามิเตอร์ของ VRAM ที่ติดตั้ง: ประเภท, ขนาด, บัส, ความถี่ และแบนด์วิดท์ที่ได้ GPU แบบรวมไม่มี VRAM เฉพาะ และใช้ส่วนแบ่งของ RAM ระบบแทน
ประเภทหน่วยความจำ | System Shared | GDDR5 |
จำนวน RAM สูงสุด | System Shared | 1 จีบี |
ความกว้างบัสหน่วยความจำ | System Shared | 128bit |
ความเร็วของนาฬิกาหน่วยความจำ | System Shared | 2000 MHz |
ไม่มีข้อมูล | 64.0 จีบี/s | |
หน่วยความจำที่ใช้ร่วมกัน | - | - |
การเชื่อมต่อและเอาต์พุต
ประเภทและจำนวนของตัวเชื่อมต่อวิดีโอที่มีใน GPU ที่รีวิว โดยทั่วไป ข้อมูลในส่วนนี้จะแม่นยำเฉพาะสำหรับการ์ดเดสก์ท็อปแบบอ้างอิง (หรือที่เรียกว่า Founders Edition สำหรับชิป NVIDIA) ผู้ผลิต OEM อาจเปลี่ยนแปลงจำนวนและประเภทของพอร์ตเอาต์พุต ในขณะที่สำหรับการ์ดโน้ตบุ๊ก ความพร้อมใช้งานของพอร์ตวิดีโอบางประเภทขึ้นอยู่กับรุ่นของแล็ปท็อปมากกว่าตัวการ์ดเอง
ขั้วต่อจอแสดงผล | No outputs | No outputs |
HDMI | - | + |
HDCP | - | + |
ความละเอียด VGA สูงสุด | ไม่มีข้อมูล | Up to 2048x1536 |
เทคโนโลยีที่รองรับ
โซลูชันทางเทคโนโลยีที่รองรับ ข้อมูลนี้จะมีประโยชน์หากคุณต้องการเทคโนโลยีเฉพาะสำหรับการใช้งานของคุณ
Optimus | - | + |
ความเข้ากันได้ของ API
รายการ API สำหรับการประมวลผล 3D และการประมวลผลทั่วไปที่รองรับ รวมถึงเวอร์ชันเฉพาะ
DirectX | 12 (12_1) | 12 API |
รุ่นเชดเดอร์ | 6.4 | 5.1 |
OpenGL | 4.6 | 4.5 |
OpenCL | 2.1 | 1.1 |
Vulkan | 1.2 | 1.1.126 |
CUDA | - | + |
ประสิทธิภาพการทดสอบแบบสังเคราะห์
การเปรียบเทียบผลการทดสอบที่ไม่เกี่ยวกับเกม โดยคะแนนรวมวัดบนมาตราส่วน 0-100 คะแนน
คะแนนรวมของการทดสอบแบบสังเคราะห์
นี่คือคะแนนการทดสอบแบบรวมของเรา เรากำลังปรับปรุงอัลกอริทึมรวมคะแนนอย่างต่อเนื่อง แต่หากคุณพบความไม่สอดคล้องใด ๆ สามารถแจ้งให้เราทราบในส่วนความคิดเห็นได้ เรามักจะแก้ไขปัญหาอย่างรวดเร็ว
Passmark
นี่คือการทดสอบ GPU ที่พบได้บ่อยที่สุด โดยจะประเมินการ์ดจอภายใต้ภาระงานหลากหลายประเภท โดยให้การทดสอบแยกต่างหาก 4 ครั้งสำหรับ Direct3D เวอร์ชัน 9, 10, 11 และ 12 (เวอร์ชันสุดท้ายใช้ความละเอียด 4K หากทำได้) รวมถึงการทดสอบเพิ่มเติมที่ใช้คุณสมบัติ DirectCompute
3DMark 11 Performance GPU
3DMark 11 เป็นการทดสอบ DirectX 11 เก่าโดย Futuremark ซึ่งประกอบไปด้วย 4 การทดสอบจาก 2 ฉาก: ฉากแรกแสดงการสำรวจซากเรือจมใต้น้ำโดยเรือดำน้ำหลายลำ อีกฉากหนึ่งแสดงวัดร้างลึกเข้าไปในป่าทึบ การทดสอบทั้งหมดใช้แสงวอลุ่ม (Volumetric Lighting) และ Tessellation อย่างหนัก แม้จะใช้ความละเอียด 1280x720 แต่ก็ยังค่อนข้างกินทรัพยากรฮาร์ดแวร์ ยกเลิกไปในเดือนมกราคม 2020 และถูกแทนที่โดย Time Spy
3DMark Vantage Performance
3DMark Vantage เป็นการทดสอบ DirectX 10 เก่าที่ใช้ความละเอียด 1280x1024 โดยมีฉากหลัก 2 ฉาก: ฉากแรกแสดงเด็กผู้หญิงคนหนึ่งหนีออกจากฐานทัพในถ้ำกลางทะเล และอีกฉากหนึ่งแสดงยานอวกาศบุกโจมตีดาวเคราะห์ที่ไร้การป้องกัน ยกเลิกไปในเดือนเมษายน 2017 และแนะนำให้ใช้การทดสอบ Time Spy แทน
3DMark Fire Strike Graphics
Fire Strike เป็นการทดสอบ DirectX 11 สำหรับเกมพีซี ประกอบด้วยการทดสอบ 2 ฉากที่แสดงการต่อสู้ระหว่างมนุษย์และสิ่งมีชีวิตที่ทำจากลาวา ใช้ความละเอียด 1920x1080 และสามารถแสดงกราฟิกที่สมจริง กินทรัพยากรฮาร์ดแวร์สูง
3DMark Cloud Gate GPU
Cloud Gate เป็นการทดสอบ DirectX 11 ระดับ 10 ที่ล้าสมัย ซึ่งเคยใช้สำหรับพีซีตามบ้านและแล็ปท็อปพื้นฐาน แสดงฉากการปล่อยยานอวกาศผ่านอุปกรณ์เทเลพอร์ตอวกาศประหลาด ด้วยความละเอียด 1280x720 เช่นเดียวกับ Ice Storm Benchmark ถูกยกเลิกในเดือนมกราคม 2020 และถูกแทนที่โดย 3DMark Night Raid
ประสิทธิภาพในการเล่นเกม
มาดูกันว่าการ์ดจอที่นำมาเปรียบเทียบเหมาะสำหรับการเล่นเกมมากน้อยแค่ไหน โดยผลการทดสอบเกมเฉพาะจะวัดเป็นเฟรมต่อวินาที (FPS)
ค่า FPS เฉลี่ยจากเกมพีซีทั้งหมด
นี่คือค่าเฉลี่ยเฟรมต่อวินาทีจากเกมยอดนิยมหลากหลายเกมในหลายความละเอียด:
900p | 35−40
+9.4%
| 32
−9.4%
|
Full HD | 17
−106%
| 35
+106%
|
1200p | 45−50
+18.4%
| 38
−18.4%
|
4K | 11
+22.2%
| 9−10
−22.2%
|
ประสิทธิภาพ FPS ในเกมยอดนิยม
Full HD
Low Preset
Counter-Strike 2 | 10−11
+11.1%
|
9−10
−11.1%
|
Cyberpunk 2077 | 9
+0%
|
9−10
+0%
|
Full HD
Medium Preset
Battlefield 5 | 10
+0%
|
10−11
+0%
|
Counter-Strike 2 | 10−11
+11.1%
|
9−10
−11.1%
|
Cyberpunk 2077 | 4
−125%
|
9−10
+125%
|
Forza Horizon 4 | 22
+29.4%
|
16−18
−29.4%
|
Forza Horizon 5 | 12
+140%
|
5−6
−140%
|
Metro Exodus | 13
+62.5%
|
8−9
−62.5%
|
Red Dead Redemption 2 | 16
+33.3%
|
12−14
−33.3%
|
Valorant | 22
+175%
|
8−9
−175%
|
Full HD
High Preset
Battlefield 5 | 12−14
+30%
|
10−11
−30%
|
Counter-Strike 2 | 10−11
+11.1%
|
9−10
−11.1%
|
Cyberpunk 2077 | 3
−200%
|
9−10
+200%
|
Dota 2 | 22
+100%
|
10−12
−100%
|
Far Cry 5 | 17
−17.6%
|
20−22
+17.6%
|
Fortnite | 18
−22.2%
|
21−24
+22.2%
|
Forza Horizon 4 | 16
−6.3%
|
16−18
+6.3%
|
Forza Horizon 5 | 8−9
+60%
|
5−6
−60%
|
Grand Theft Auto V | 13
+18.2%
|
10−12
−18.2%
|
Metro Exodus | 8
+0%
|
8−9
+0%
|
PLAYERUNKNOWN'S BATTLEGROUNDS | 37
+12.1%
|
30−35
−12.1%
|
Red Dead Redemption 2 | 14−16
+16.7%
|
12−14
−16.7%
|
The Witcher 3: Wild Hunt | 6
−117%
|
12−14
+117%
|
Valorant | 12−14
+50%
|
8−9
−50%
|
World of Tanks | 42
−112%
|
89
+112%
|
Full HD
Ultra Preset
Battlefield 5 | 6
−66.7%
|
10−11
+66.7%
|
Counter-Strike 2 | 10−11
+11.1%
|
9−10
−11.1%
|
Cyberpunk 2077 | 3
−200%
|
9−10
+200%
|
Dota 2 | 35
+218%
|
10−12
−218%
|
Far Cry 5 | 21−24
+15%
|
20−22
−15%
|
Forza Horizon 4 | 14
−21.4%
|
16−18
+21.4%
|
Forza Horizon 5 | 8−9
+60%
|
5−6
−60%
|
PLAYERUNKNOWN'S BATTLEGROUNDS | 10
−230%
|
30−35
+230%
|
Valorant | 15
+87.5%
|
8−9
−87.5%
|
1440p
High Preset
Dota 2 | 4−5
+33.3%
|
3−4
−33.3%
|
Grand Theft Auto V | 4−5
+33.3%
|
3−4
−33.3%
|
PLAYERUNKNOWN'S BATTLEGROUNDS | 30−35
+19.2%
|
24−27
−19.2%
|
Red Dead Redemption 2 | 3−4
+0%
|
3−4
+0%
|
World of Tanks | 30−35
+23.1%
|
24−27
−23.1%
|
1440p
Ultra Preset
Battlefield 5 | 6−7
+20%
|
5−6
−20%
|
Counter-Strike 2 | 30−35
+0%
|
30−35
+0%
|
Cyberpunk 2077 | 5−6
+25%
|
4−5
−25%
|
Far Cry 5 | 10−11
+11.1%
|
9−10
−11.1%
|
Forza Horizon 4 | 6−7
+50%
|
4−5
−50%
|
Forza Horizon 5 | 6−7
+20%
|
5−6
−20%
|
Metro Exodus | 2−3
+100%
|
1−2
−100%
|
The Witcher 3: Wild Hunt | 7−8
+0%
|
7−8
+0%
|
Valorant | 12−14
+18.2%
|
10−12
−18.2%
|
4K
High Preset
Dota 2 | 16−18
+0%
|
16−18
+0%
|
Grand Theft Auto V | 16−18
+0%
|
16−18
+0%
|
Metro Exodus | 0−1 | 0−1 |
PLAYERUNKNOWN'S BATTLEGROUNDS | 14
+27.3%
|
10−12
−27.3%
|
Red Dead Redemption 2 | 3−4
+50%
|
2−3
−50%
|
The Witcher 3: Wild Hunt | 16−18
+0%
|
16−18
+0%
|
4K
Ultra Preset
Battlefield 5 | 4−5
+33.3%
|
3−4
−33.3%
|
Cyberpunk 2077 | 2−3
+0%
|
2−3
+0%
|
Dota 2 | 15
−6.7%
|
16−18
+6.7%
|
Far Cry 5 | 5−6
+25%
|
4−5
−25%
|
Fortnite | 3−4
+0%
|
3−4
+0%
|
Forza Horizon 4 | 3−4
+50%
|
2−3
−50%
|
Forza Horizon 5 | 2−3
+0%
|
2−3
+0%
|
Valorant | 4−5
+33.3%
|
3−4
−33.3%
|
นี่คือวิธีที่ RX Vega 8 (Ryzen 2000/3000) และ GTX 660M แข่งขันกันในเกมยอดนิยม:
- RX Vega 8 (Ryzen 2000/3000) เร็วกว่า 9% ในความละเอียด 900p
- GTX 660M เร็วกว่า 106% ในความละเอียด 1080p
- RX Vega 8 (Ryzen 2000/3000) เร็วกว่า 18% ในความละเอียด 1200p
- RX Vega 8 (Ryzen 2000/3000) เร็วกว่า 22% ในความละเอียด 4K
นี่คือช่วงความแตกต่างของประสิทธิภาพที่สังเกตได้จากเกมยอดนิยม:
- ในเกม Dota 2 ด้วยความละเอียด 1080p และการตั้งค่า Ultra Preset อุปกรณ์ RX Vega 8 (Ryzen 2000/3000) เร็วกว่า 218%
- ในเกม PLAYERUNKNOWN'S BATTLEGROUNDS ด้วยความละเอียด 1080p และการตั้งค่า Ultra Preset อุปกรณ์ GTX 660M เร็วกว่า 230%
โดยรวมแล้ว ในเกมยอดนิยม:
- RX Vega 8 (Ryzen 2000/3000) เหนือกว่าใน 36การทดสอบ (60%)
- GTX 660M เหนือกว่าใน 12การทดสอบ (20%)
- เสมอกันใน 12การทดสอบ (20%)
สรุปข้อดีและข้อเสีย
คะแนนประสิทธิภาพ | 4.52 | 3.78 |
ความใหม่ล่าสุด | 26 ตุลาคม 2017 | 22 มีนาคม 2012 |
การผลิตชิปด้วยลิทอกราฟี | 14 nm | 28 nm |
การใช้พลังงาน (TDP) | 15 วัตต์ | 50 วัตต์ |
RX Vega 8 (Ryzen 2000/3000) มีข้อได้เปรียบ มีคะแนนประสิทธิภาพรวมสูงกว่าถึง 19.6% และได้เปรียบด้านอายุการเปิดตัวอยู่ที่ 5 ปี และมีกระบวนการลิทอกราฟีที่ก้าวหน้ากว่าถึง 100%และใช้พลังงานน้อยกว่าถึง 233.3%
Radeon RX Vega 8 (Ryzen 2000/3000) เป็นตัวเลือกที่เราแนะนำ เนื่องจากมีประสิทธิภาพเหนือกว่า GeForce GTX 660M ในการทดสอบประสิทธิภาพ
หากคุณยังมีคำถามเกี่ยวกับการเลือก GPU ที่รีวิวไว้ สามารถถามได้ในส่วนความคิดเห็น แล้วเราจะตอบกลับ