Quadro RTX A6000 เทียบกับ Quadro P620
คะแนนประสิทธิภาพรวม
เราได้เปรียบเทียบ Quadro P620 และ Quadro RTX A6000 โดยครอบคลุมสเปกและผลการทดสอบที่เกี่ยวข้องทั้งหมด
RTX A6000 มีประสิทธิภาพดีกว่า P620 อย่างมหาศาลถึง 520% ตามผลการทดสอบแบบรวมของเรา
รายละเอียดหลัก
สถาปัตยกรรม GPU, กลุ่มตลาด, ความคุ้มค่า และพารามิเตอร์ทั่วไปอื่นๆ ที่ถูกนำมาเปรียบเทียบ
ตำแหน่งในการจัดอันดับประสิทธิภาพ | 484 | 44 |
จัดอันดับตามความนิยม | ไม่ได้อยู่ใน 100 อันดับแรก | ไม่ได้อยู่ใน 100 อันดับแรก |
ความคุ้มค่าเมื่อเทียบกับราคา | ไม่มีข้อมูล | 12.05 |
ประสิทธิภาพการใช้พลังงาน | 16.20 | 13.40 |
สถาปัตยกรรม | Pascal (2016−2021) | Ampere (2020−2024) |
ชื่อรหัส GPU | GP107 | GA102 |
ประเภทตลาด | เวิร์กสเตชัน | เวิร์กสเตชัน |
วันที่วางจำหน่าย | 1 กุมภาพันธ์ 2018 (เมื่อ 7 ปี ปีที่แล้ว) | 5 ตุลาคม 2020 (เมื่อ 4 ปี ปีที่แล้ว) |
ราคาเปิดตัว (MSRP) | ไม่มีข้อมูล | $4,649 |
ความคุ้มค่าเมื่อเทียบกับราคา
อัตราส่วนประสิทธิภาพต่อราคา ยิ่งสูงยิ่งดี
สเปกโดยละเอียด
พารามิเตอร์ทั่วไป เช่น จำนวนเชดเดอร์, ความถี่พื้นฐานและความถี่บูสต์ของ GPU, กระบวนการผลิต, ความเร็วการประมวลผลและการเท็กซ์เจอร์ โปรดทราบว่าการใช้พลังงานของการ์ดจอบางรุ่นอาจเกินกว่า TDP ที่กำหนดไว้ โดยเฉพาะเมื่อทำการโอเวอร์คล็อก
พาธไลน์ / คอร์ CUDA | 512 | 10752 |
ความเร็วสัญญาณนาฬิกาหลัก | 1177 MHz | 1410 MHz |
เพิ่มความเร็วสัญญาณนาฬิกา | 1443 MHz | 1800 MHz |
จำนวนทรานซิสเตอร์ | 3,300 million | 28,300 million |
เทคโนโลยีกระบวนการผลิต | 14 nm | 8 nm |
การใช้พลังงาน (TDP) | 40 Watt | 300 Watt |
อัตราการเติมเท็กซ์เจอร์ | 46.18 | 604.8 |
ประสิทธิภาพการประมวลผลจุดลอยตัว | 1.478 TFLOPS | 38.71 TFLOPS |
ROPs | 16 | 112 |
TMUs | 32 | 336 |
Tensor Cores | ไม่มีข้อมูล | 336 |
Ray Tracing Cores | ไม่มีข้อมูล | 84 |
ฟอร์มแฟกเตอร์และความเข้ากันได้
ข้อมูลเกี่ยวกับความเข้ากันได้กับอุปกรณ์คอมพิวเตอร์อื่นๆ มีประโยชน์เมื่อเลือกการกำหนดค่าคอมพิวเตอร์ในอนาคตหรืออัปเกรดคอมพิวเตอร์ที่มีอยู่ สำหรับการ์ดจอเดสก์ท็อป จะรวมถึงอินเทอร์เฟซและบัส (ความเข้ากันได้กับเมนบอร์ด) และขั้วต่อไฟเพิ่มเติม (ความเข้ากันได้กับหน่วยจ่ายไฟ)
อินเทอร์เฟซ | PCIe 3.0 x16 | PCIe 4.0 x16 |
ความยาว | 145 mm | 267 mm |
ความกว้าง | IGP | 2-slot |
ขั้วต่อพลังงานเสริม | None | 8-pin EPS |
ความจุและประเภทของ VRAM
พารามิเตอร์ของ VRAM ที่ติดตั้ง: ประเภท, ขนาด, บัส, ความถี่ และแบนด์วิดท์ที่ได้ GPU แบบรวมไม่มี VRAM เฉพาะ และใช้ส่วนแบ่งของ RAM ระบบแทน
ประเภทหน่วยความจำ | GDDR5 | GDDR6 |
จำนวน RAM สูงสุด | 2 จีบี | 48 จีบี |
ความกว้างบัสหน่วยความจำ | 128 Bit | 384 Bit |
ความเร็วของนาฬิกาหน่วยความจำ | 1502 MHz | 2000 MHz |
96.13 จีบี/s | 768.0 จีบี/s | |
หน่วยความจำที่ใช้ร่วมกัน | - | - |
Resizable BAR | - | + |
การเชื่อมต่อและเอาต์พุต
ประเภทและจำนวนของตัวเชื่อมต่อวิดีโอที่มีใน GPU ที่รีวิว โดยทั่วไป ข้อมูลในส่วนนี้จะแม่นยำเฉพาะสำหรับการ์ดเดสก์ท็อปแบบอ้างอิง (หรือที่เรียกว่า Founders Edition สำหรับชิป NVIDIA) ผู้ผลิต OEM อาจเปลี่ยนแปลงจำนวนและประเภทของพอร์ตเอาต์พุต ในขณะที่สำหรับการ์ดโน้ตบุ๊ก ความพร้อมใช้งานของพอร์ตวิดีโอบางประเภทขึ้นอยู่กับรุ่นของแล็ปท็อปมากกว่าตัวการ์ดเอง
ขั้วต่อจอแสดงผล | No outputs | 4x DisplayPort 1.4a |
ความเข้ากันได้ของ API และ SDK
รายการ API สำหรับการประมวลผล 3D และการประมวลผลทั่วไปที่รองรับ รวมถึงเวอร์ชันเฉพาะ
DirectX | 12 (12_1) | 12 Ultimate (12_2) |
รุ่นเชดเดอร์ | 6.4 | 6.7 |
OpenGL | 4.6 | 4.6 |
OpenCL | 1.2 | 3.0 |
Vulkan | 1.2.131 | 1.3 |
CUDA | 6.1 | 8.6 |
DLSS | - | + |
ประสิทธิภาพการทดสอบแบบสังเคราะห์
การเปรียบเทียบผลการทดสอบที่ไม่เกี่ยวกับเกม โดยคะแนนรวมวัดบนมาตราส่วน 0-100 คะแนน
คะแนนรวมของการทดสอบแบบสังเคราะห์
นี่คือคะแนนการทดสอบแบบรวมของเรา
Passmark
นี่คือการทดสอบ GPU ที่พบได้บ่อยที่สุด โดยจะประเมินการ์ดจอภายใต้ภาระงานหลากหลายประเภท โดยให้การทดสอบแยกต่างหาก 4 ครั้งสำหรับ Direct3D เวอร์ชัน 9, 10, 11 และ 12 (เวอร์ชันสุดท้ายใช้ความละเอียด 4K หากทำได้) รวมถึงการทดสอบเพิ่มเติมที่ใช้คุณสมบัติ DirectCompute
3DMark 11 Performance GPU
3DMark 11 เป็นการทดสอบ DirectX 11 เก่าโดย Futuremark ซึ่งประกอบไปด้วย 4 การทดสอบจาก 2 ฉาก: ฉากแรกแสดงการสำรวจซากเรือจมใต้น้ำโดยเรือดำน้ำหลายลำ อีกฉากหนึ่งแสดงวัดร้างลึกเข้าไปในป่าทึบ การทดสอบทั้งหมดใช้แสงวอลุ่ม (Volumetric Lighting) และ Tessellation อย่างหนัก แม้จะใช้ความละเอียด 1280x720 แต่ก็ยังค่อนข้างกินทรัพยากรฮาร์ดแวร์ ยกเลิกไปในเดือนมกราคม 2020 และถูกแทนที่โดย Time Spy
3DMark Vantage Performance
3DMark Vantage เป็นการทดสอบ DirectX 10 เก่าที่ใช้ความละเอียด 1280x1024 โดยมีฉากหลัก 2 ฉาก: ฉากแรกแสดงเด็กผู้หญิงคนหนึ่งหนีออกจากฐานทัพในถ้ำกลางทะเล และอีกฉากหนึ่งแสดงยานอวกาศบุกโจมตีดาวเคราะห์ที่ไร้การป้องกัน ยกเลิกไปในเดือนเมษายน 2017 และแนะนำให้ใช้การทดสอบ Time Spy แทน
3DMark Fire Strike Graphics
Fire Strike เป็นการทดสอบ DirectX 11 สำหรับเกมพีซี ประกอบด้วยการทดสอบ 2 ฉากที่แสดงการต่อสู้ระหว่างมนุษย์และสิ่งมีชีวิตที่ทำจากลาวา ใช้ความละเอียด 1920x1080 และสามารถแสดงกราฟิกที่สมจริง กินทรัพยากรฮาร์ดแวร์สูง
3DMark Cloud Gate GPU
Cloud Gate เป็นการทดสอบ DirectX 11 ระดับ 10 ที่ล้าสมัย ซึ่งเคยใช้สำหรับพีซีตามบ้านและแล็ปท็อปพื้นฐาน แสดงฉากการปล่อยยานอวกาศผ่านอุปกรณ์เทเลพอร์ตอวกาศประหลาด ด้วยความละเอียด 1280x720 เช่นเดียวกับ Ice Storm Benchmark ถูกยกเลิกในเดือนมกราคม 2020 และถูกแทนที่โดย 3DMark Night Raid
3DMark Ice Storm GPU
Ice Storm Graphics เป็นการทดสอบล้าสมัยในชุดการทดสอบ 3DMark ซึ่งเคยใช้วัดประสิทธิภาพของแล็ปท็อประดับเริ่มต้นและแท็บเล็ต Windows ใช้คุณสมบัติของ DirectX 11 ระดับ 9 ในการแสดงฉากต่อสู้ระหว่างยานอวกาศสองกองใกล้กับดาวเคราะห์น้ำแข็งที่ความละเอียด 1280x720 ยกเลิกไปในเดือนมกราคม 2020 และถูกแทนที่โดย 3DMark Night Raid
ประสิทธิภาพในการเล่นเกม
มาดูกันว่าการ์ดจอที่นำมาเปรียบเทียบเหมาะสำหรับการเล่นเกมมากน้อยแค่ไหน โดยผลการทดสอบเกมเฉพาะจะวัดเป็นเฟรมต่อวินาที (FPS)
ค่า FPS เฉลี่ยจากเกมพีซีทั้งหมด
นี่คือค่าเฉลี่ยเฟรมต่อวินาทีจากเกมยอดนิยมหลากหลายเกมในหลายความละเอียด:
Full HD | 47
−236%
| 158
+236%
|
1440p | 18−20
−583%
| 123
+583%
|
4K | 16−18
−563%
| 106
+563%
|
ต้นทุนต่อเฟรม, $
1080p | ไม่มีข้อมูล | 29.42 |
1440p | ไม่มีข้อมูล | 37.80 |
4K | ไม่มีข้อมูล | 43.86 |
ประสิทธิภาพ FPS ในเกมยอดนิยม
Full HD
Low Preset
Counter-Strike 2 | 45−50
−509%
|
280−290
+509%
|
Cyberpunk 2077 | 18−20
−644%
|
130−140
+644%
|
Hogwarts Legacy | 16−18
−731%
|
130−140
+731%
|
Full HD
Medium Preset
Battlefield 5 | 35−40
−308%
|
150−160
+308%
|
Counter-Strike 2 | 45−50
−509%
|
280−290
+509%
|
Cyberpunk 2077 | 18−20
−644%
|
130−140
+644%
|
Far Cry 5 | 27−30
−79.3%
|
52
+79.3%
|
Fortnite | 113
−115%
|
240−250
+115%
|
Forza Horizon 4 | 35−40
−441%
|
210−220
+441%
|
Forza Horizon 5 | 27−30
−504%
|
160−170
+504%
|
Hogwarts Legacy | 16−18
−731%
|
130−140
+731%
|
PLAYERUNKNOWN'S BATTLEGROUNDS | 30−35
−450%
|
170−180
+450%
|
Valorant | 85−90
−241%
|
300−310
+241%
|
Full HD
High Preset
Battlefield 5 | 35−40
−308%
|
150−160
+308%
|
Counter-Strike 2 | 45−50
−509%
|
280−290
+509%
|
Counter-Strike: Global Offensive | 130−140
−103%
|
270−280
+103%
|
Cyberpunk 2077 | 18−20
−644%
|
130−140
+644%
|
Dota 2 | 90
−54.4%
|
139
+54.4%
|
Far Cry 5 | 27−30
−82.8%
|
53
+82.8%
|
Fortnite | 42
−479%
|
240−250
+479%
|
Forza Horizon 4 | 35−40
−441%
|
210−220
+441%
|
Forza Horizon 5 | 27−30
−504%
|
160−170
+504%
|
Grand Theft Auto V | 30−35
−276%
|
128
+276%
|
Hogwarts Legacy | 16−18
−731%
|
130−140
+731%
|
Metro Exodus | 17
−476%
|
98
+476%
|
PLAYERUNKNOWN'S BATTLEGROUNDS | 30−35
−450%
|
170−180
+450%
|
The Witcher 3: Wild Hunt | 32
−859%
|
307
+859%
|
Valorant | 85−90
−241%
|
300−310
+241%
|
Full HD
Ultra Preset
Battlefield 5 | 35−40
−308%
|
150−160
+308%
|
Cyberpunk 2077 | 18−20
−644%
|
130−140
+644%
|
Dota 2 | 83
−57.8%
|
131
+57.8%
|
Far Cry 5 | 27−30
−79.3%
|
52
+79.3%
|
Forza Horizon 4 | 35−40
−441%
|
210−220
+441%
|
Hogwarts Legacy | 16−18
−731%
|
130−140
+731%
|
PLAYERUNKNOWN'S BATTLEGROUNDS | 30−35
−450%
|
170−180
+450%
|
The Witcher 3: Wild Hunt | 17
−959%
|
180
+959%
|
Valorant | 85−90
−241%
|
300−310
+241%
|
Full HD
Epic Preset
Fortnite | 29
−738%
|
240−250
+738%
|
1440p
High Preset
Counter-Strike 2 | 14−16
−953%
|
150−160
+953%
|
Counter-Strike: Global Offensive | 65−70
−482%
|
350−400
+482%
|
Grand Theft Auto V | 12−14
−700%
|
96
+700%
|
Metro Exodus | 10−11
−740%
|
84
+740%
|
PLAYERUNKNOWN'S BATTLEGROUNDS | 40−45
−298%
|
170−180
+298%
|
Valorant | 100−105
−240%
|
300−350
+240%
|
1440p
Ultra Preset
Battlefield 5 | 21−24
−538%
|
130−140
+538%
|
Cyberpunk 2077 | 7−8
−943%
|
70−75
+943%
|
Far Cry 5 | 18−20
−174%
|
52
+174%
|
Forza Horizon 4 | 21−24
−729%
|
170−180
+729%
|
Hogwarts Legacy | 9−10
−678%
|
70−75
+678%
|
The Witcher 3: Wild Hunt | 12−14
−846%
|
120−130
+846%
|
1440p
Epic Preset
Fortnite | 18−20
−689%
|
150−160
+689%
|
4K
High Preset
Counter-Strike 2 | 2−3
−3450%
|
70−75
+3450%
|
Grand Theft Auto V | 20−22
−675%
|
155
+675%
|
Hogwarts Legacy | 4−5
−825%
|
35−40
+825%
|
Metro Exodus | 4−5
−1650%
|
70
+1650%
|
The Witcher 3: Wild Hunt | 9−10
−1522%
|
146
+1522%
|
Valorant | 45−50
−576%
|
300−350
+576%
|
4K
Ultra Preset
Battlefield 5 | 10−11
−830%
|
90−95
+830%
|
Counter-Strike 2 | 2−3
−3450%
|
70−75
+3450%
|
Cyberpunk 2077 | 3−4
−1033%
|
30−35
+1033%
|
Dota 2 | 30−35
−288%
|
128
+288%
|
Far Cry 5 | 9−10
−456%
|
50
+456%
|
Forza Horizon 4 | 14−16
−733%
|
120−130
+733%
|
Hogwarts Legacy | 4−5
−825%
|
35−40
+825%
|
PLAYERUNKNOWN'S BATTLEGROUNDS | 8−9
−1100%
|
95−100
+1100%
|
4K
Epic Preset
Fortnite | 8−9
−888%
|
75−80
+888%
|
นี่คือวิธีที่ Quadro P620 และ RTX A6000 แข่งขันกันในเกมยอดนิยม:
- RTX A6000 เร็วกว่า 236% ในความละเอียด 1080p
- RTX A6000 เร็วกว่า 583% ในความละเอียด 1440p
- RTX A6000 เร็วกว่า 563% ในความละเอียด 4K
นี่คือช่วงความแตกต่างของประสิทธิภาพที่สังเกตได้จากเกมยอดนิยม:
- ในเกม Counter-Strike 2 ด้วยความละเอียด 4K และการตั้งค่า High Preset อุปกรณ์ RTX A6000 เร็วกว่า 3450%
โดยรวมแล้ว ในเกมยอดนิยม:
- โดยไม่มีข้อยกเว้น RTX A6000 เหนือกว่า Quadro P620 ในการทดสอบทั้ง 66 ครั้งของเรา
สรุปข้อดีและข้อเสีย
คะแนนประสิทธิภาพ | 8.83 | 54.78 |
ความใหม่ล่าสุด | 1 กุมภาพันธ์ 2018 | 5 ตุลาคม 2020 |
จำนวน RAM สูงสุด | 2 จีบี | 48 จีบี |
การผลิตชิปด้วยลิทอกราฟี | 14 nm | 8 nm |
การใช้พลังงาน (TDP) | 40 วัตต์ | 300 วัตต์ |
Quadro P620 มีข้อได้เปรียบ ใช้พลังงานน้อยกว่าถึง 650%
ในทางกลับกัน RTX A6000 มีข้อได้เปรียบ มีคะแนนประสิทธิภาพรวมสูงกว่าถึง 520.4% และได้เปรียบด้านอายุการเปิดตัวอยู่ที่ 2 ปี และและมีกระบวนการลิทอกราฟีที่ก้าวหน้ากว่าถึง 75%
Quadro RTX A6000 เป็นตัวเลือกที่เราแนะนำ เนื่องจากมีประสิทธิภาพเหนือกว่า Quadro P620 ในการทดสอบประสิทธิภาพ