Radeon RX Vega 8 (Ryzen 2000/3000) เทียบกับ Quadro P3200
คะแนนประสิทธิภาพรวม
เราได้เปรียบเทียบ Quadro P3200 กับ Radeon RX Vega 8 (Ryzen 2000/3000) รวมถึงสเปกและข้อมูลประสิทธิภาพ
P3200 มีประสิทธิภาพดีกว่า RX Vega 8 (Ryzen 2000/3000) อย่างมหาศาลถึง 406% ตามผลการทดสอบแบบรวมของเรา
รายละเอียดหลัก
สถาปัตยกรรม GPU, กลุ่มตลาด, ความคุ้มค่า และพารามิเตอร์ทั่วไปอื่นๆ ที่ถูกนำมาเปรียบเทียบ
ตำแหน่งในการจัดอันดับประสิทธิภาพ | 249 | 661 |
จัดอันดับตามความนิยม | ไม่ได้อยู่ใน 100 อันดับแรก | 36 |
ประสิทธิภาพการใช้พลังงาน | 21.00 | 20.74 |
สถาปัตยกรรม | Pascal (2016−2021) | Vega (2017−2020) |
ชื่อรหัส GPU | GP104 | Vega Raven Ridge |
ประเภทตลาด | เวิร์กสเตชันแบบพกพา | แล็ปท็อป |
วันที่วางจำหน่าย | 21 กุมภาพันธ์ 2018 (เมื่อ 6 ปี ปีที่แล้ว) | 26 ตุลาคม 2017 (เมื่อ 7 ปี ปีที่แล้ว) |
สเปกโดยละเอียด
พารามิเตอร์ทั่วไป เช่น จำนวนเชดเดอร์, ความถี่พื้นฐานและความถี่บูสต์ของ GPU, กระบวนการผลิต, ความเร็วการประมวลผลและการเท็กซ์เจอร์ โปรดทราบว่าการใช้พลังงานของการ์ดจอบางรุ่นอาจเกินกว่า TDP ที่กำหนดไว้ โดยเฉพาะเมื่อทำการโอเวอร์คล็อก
พาธไลน์ / คอร์ CUDA | 1792 | 512 |
ความเร็วสัญญาณนาฬิกาหลัก | 1328 MHz | 300 MHz |
เพิ่มความเร็วสัญญาณนาฬิกา | 1543 MHz | 1200 MHz |
จำนวนทรานซิสเตอร์ | 7,200 million | 9,800 million |
เทคโนโลยีกระบวนการผลิต | 16 nm | 14 nm |
การใช้พลังงาน (TDP) | 75 Watt | 15 Watt |
อัตราการเติมเท็กซ์เจอร์ | 172.8 | 57.60 |
ประสิทธิภาพการประมวลผลจุดลอยตัว | 5.53 TFLOPS | 1.843 TFLOPS |
ROPs | 64 | 8 |
TMUs | 112 | 32 |
ฟอร์มแฟกเตอร์และความเข้ากันได้
ข้อมูลเกี่ยวกับความเข้ากันได้กับอุปกรณ์คอมพิวเตอร์อื่นๆ มีประโยชน์เมื่อเลือกการกำหนดค่าคอมพิวเตอร์ในอนาคตหรืออัปเกรดคอมพิวเตอร์ที่มีอยู่ สำหรับการ์ดจอเดสก์ท็อป จะรวมถึงอินเทอร์เฟซและบัส (ความเข้ากันได้กับเมนบอร์ด) และขั้วต่อไฟเพิ่มเติม (ความเข้ากันได้กับหน่วยจ่ายไฟ)
ขนาดแล็ปท็อป | large | ไม่มีข้อมูล |
อินเทอร์เฟซ | MXM-B (3.0) | IGP |
ขั้วต่อพลังงานเสริม | None | None |
ความจุและประเภทของ VRAM
พารามิเตอร์ของ VRAM ที่ติดตั้ง: ประเภท, ขนาด, บัส, ความถี่ และแบนด์วิดท์ที่ได้ GPU แบบรวมไม่มี VRAM เฉพาะ และใช้ส่วนแบ่งของ RAM ระบบแทน
ประเภทหน่วยความจำ | GDDR5 | System Shared |
จำนวน RAM สูงสุด | 6 จีบี | System Shared |
ความกว้างบัสหน่วยความจำ | 192 Bit | System Shared |
ความเร็วของนาฬิกาหน่วยความจำ | 1753 MHz | System Shared |
168.3 จีบี/s | ไม่มีข้อมูล | |
หน่วยความจำที่ใช้ร่วมกัน | - | - |
การเชื่อมต่อและเอาต์พุต
ประเภทและจำนวนของตัวเชื่อมต่อวิดีโอที่มีใน GPU ที่รีวิว โดยทั่วไป ข้อมูลในส่วนนี้จะแม่นยำเฉพาะสำหรับการ์ดเดสก์ท็อปแบบอ้างอิง (หรือที่เรียกว่า Founders Edition สำหรับชิป NVIDIA) ผู้ผลิต OEM อาจเปลี่ยนแปลงจำนวนและประเภทของพอร์ตเอาต์พุต ในขณะที่สำหรับการ์ดโน้ตบุ๊ก ความพร้อมใช้งานของพอร์ตวิดีโอบางประเภทขึ้นอยู่กับรุ่นของแล็ปท็อปมากกว่าตัวการ์ดเอง
ขั้วต่อจอแสดงผล | No outputs | No outputs |
เทคโนโลยีที่รองรับ
โซลูชันทางเทคโนโลยีที่รองรับ ข้อมูลนี้จะมีประโยชน์หากคุณต้องการเทคโนโลยีเฉพาะสำหรับการใช้งานของคุณ
Optimus | + | - |
ความเข้ากันได้ของ API
รายการ API สำหรับการประมวลผล 3D และการประมวลผลทั่วไปที่รองรับ รวมถึงเวอร์ชันเฉพาะ
DirectX | 12 (12_1) | 12 (12_1) |
รุ่นเชดเดอร์ | 6.4 | 6.4 |
OpenGL | 4.6 | 4.6 |
OpenCL | 1.2 | 2.1 |
Vulkan | 1.2.131 | 1.2 |
CUDA | 6.1 | - |
ประสิทธิภาพการทดสอบแบบสังเคราะห์
การเปรียบเทียบผลการทดสอบที่ไม่เกี่ยวกับเกม โดยคะแนนรวมวัดบนมาตราส่วน 0-100 คะแนน
คะแนนรวมของการทดสอบแบบสังเคราะห์
นี่คือคะแนนการทดสอบแบบรวมของเรา เรากำลังปรับปรุงอัลกอริทึมรวมคะแนนอย่างต่อเนื่อง แต่หากคุณพบความไม่สอดคล้องใด ๆ สามารถแจ้งให้เราทราบในส่วนความคิดเห็นได้ เรามักจะแก้ไขปัญหาอย่างรวดเร็ว
Passmark
นี่คือการทดสอบ GPU ที่พบได้บ่อยที่สุด โดยจะประเมินการ์ดจอภายใต้ภาระงานหลากหลายประเภท โดยให้การทดสอบแยกต่างหาก 4 ครั้งสำหรับ Direct3D เวอร์ชัน 9, 10, 11 และ 12 (เวอร์ชันสุดท้ายใช้ความละเอียด 4K หากทำได้) รวมถึงการทดสอบเพิ่มเติมที่ใช้คุณสมบัติ DirectCompute
3DMark 11 Performance GPU
3DMark 11 เป็นการทดสอบ DirectX 11 เก่าโดย Futuremark ซึ่งประกอบไปด้วย 4 การทดสอบจาก 2 ฉาก: ฉากแรกแสดงการสำรวจซากเรือจมใต้น้ำโดยเรือดำน้ำหลายลำ อีกฉากหนึ่งแสดงวัดร้างลึกเข้าไปในป่าทึบ การทดสอบทั้งหมดใช้แสงวอลุ่ม (Volumetric Lighting) และ Tessellation อย่างหนัก แม้จะใช้ความละเอียด 1280x720 แต่ก็ยังค่อนข้างกินทรัพยากรฮาร์ดแวร์ ยกเลิกไปในเดือนมกราคม 2020 และถูกแทนที่โดย Time Spy
3DMark Vantage Performance
3DMark Vantage เป็นการทดสอบ DirectX 10 เก่าที่ใช้ความละเอียด 1280x1024 โดยมีฉากหลัก 2 ฉาก: ฉากแรกแสดงเด็กผู้หญิงคนหนึ่งหนีออกจากฐานทัพในถ้ำกลางทะเล และอีกฉากหนึ่งแสดงยานอวกาศบุกโจมตีดาวเคราะห์ที่ไร้การป้องกัน ยกเลิกไปในเดือนเมษายน 2017 และแนะนำให้ใช้การทดสอบ Time Spy แทน
3DMark Fire Strike Graphics
Fire Strike เป็นการทดสอบ DirectX 11 สำหรับเกมพีซี ประกอบด้วยการทดสอบ 2 ฉากที่แสดงการต่อสู้ระหว่างมนุษย์และสิ่งมีชีวิตที่ทำจากลาวา ใช้ความละเอียด 1920x1080 และสามารถแสดงกราฟิกที่สมจริง กินทรัพยากรฮาร์ดแวร์สูง
3DMark Cloud Gate GPU
Cloud Gate เป็นการทดสอบ DirectX 11 ระดับ 10 ที่ล้าสมัย ซึ่งเคยใช้สำหรับพีซีตามบ้านและแล็ปท็อปพื้นฐาน แสดงฉากการปล่อยยานอวกาศผ่านอุปกรณ์เทเลพอร์ตอวกาศประหลาด ด้วยความละเอียด 1280x720 เช่นเดียวกับ Ice Storm Benchmark ถูกยกเลิกในเดือนมกราคม 2020 และถูกแทนที่โดย 3DMark Night Raid
3DMark Ice Storm GPU
Ice Storm Graphics เป็นการทดสอบล้าสมัยในชุดการทดสอบ 3DMark ซึ่งเคยใช้วัดประสิทธิภาพของแล็ปท็อประดับเริ่มต้นและแท็บเล็ต Windows ใช้คุณสมบัติของ DirectX 11 ระดับ 9 ในการแสดงฉากต่อสู้ระหว่างยานอวกาศสองกองใกล้กับดาวเคราะห์น้ำแข็งที่ความละเอียด 1280x720 ยกเลิกไปในเดือนมกราคม 2020 และถูกแทนที่โดย 3DMark Night Raid
3DMark Time Spy Graphics
ประสิทธิภาพในการเล่นเกม
มาดูกันว่าการ์ดจอที่นำมาเปรียบเทียบเหมาะสำหรับการเล่นเกมมากน้อยแค่ไหน โดยผลการทดสอบเกมเฉพาะจะวัดเป็นเฟรมต่อวินาที (FPS)
ค่า FPS เฉลี่ยจากเกมพีซีทั้งหมด
นี่คือค่าเฉลี่ยเฟรมต่อวินาทีจากเกมยอดนิยมหลากหลายเกมในหลายความละเอียด:
Full HD | 85
+400%
| 17
−400%
|
4K | 28
+155%
| 11
−155%
|
ประสิทธิภาพ FPS ในเกมยอดนิยม
Full HD
Low Preset
Counter-Strike 2 | 40−45
+250%
|
12−14
−250%
|
Cyberpunk 2077 | 45−50
+411%
|
9
−411%
|
Elden Ring | 70−75
+573%
|
10−12
−573%
|
Full HD
Medium Preset
Battlefield 5 | 70−75
+610%
|
10
−610%
|
Counter-Strike 2 | 40−45
+250%
|
12−14
−250%
|
Cyberpunk 2077 | 45−50
+1050%
|
4
−1050%
|
Forza Horizon 4 | 95−100
+345%
|
22
−345%
|
Metro Exodus | 60−65
+369%
|
13
−369%
|
Red Dead Redemption 2 | 50−55
+219%
|
16
−219%
|
Valorant | 90−95
+318%
|
22
−318%
|
Full HD
High Preset
Battlefield 5 | 70−75
+446%
|
12−14
−446%
|
Counter-Strike 2 | 40−45
+250%
|
12−14
−250%
|
Cyberpunk 2077 | 45−50
+1433%
|
3
−1433%
|
Dota 2 | 40
+81.8%
|
22
−81.8%
|
Elden Ring | 70−75
+1380%
|
5
−1380%
|
Far Cry 5 | 73
+329%
|
17
−329%
|
Fortnite | 110−120
+550%
|
18
−550%
|
Forza Horizon 4 | 95−100
+513%
|
16
−513%
|
Grand Theft Auto V | 75−80
+508%
|
13
−508%
|
Metro Exodus | 60−65
+663%
|
8
−663%
|
PLAYERUNKNOWN'S BATTLEGROUNDS | 140−150
+300%
|
37
−300%
|
Red Dead Redemption 2 | 50−55
+264%
|
14−16
−264%
|
The Witcher 3: Wild Hunt | 70−75
+1117%
|
6
−1117%
|
Valorant | 90−95
+922%
|
9−10
−922%
|
World of Tanks | 240−250
+490%
|
42
−490%
|
Full HD
Ultra Preset
Battlefield 5 | 70−75
+1083%
|
6
−1083%
|
Counter-Strike 2 | 40−45
+250%
|
12−14
−250%
|
Cyberpunk 2077 | 45−50
+1433%
|
3
−1433%
|
Dota 2 | 112
+220%
|
35
−220%
|
Far Cry 5 | 70−75
+217%
|
21−24
−217%
|
Forza Horizon 4 | 95−100
+600%
|
14
−600%
|
PLAYERUNKNOWN'S BATTLEGROUNDS | 140−150
+1380%
|
10
−1380%
|
Valorant | 90−95
+513%
|
15
−513%
|
1440p
High Preset
Dota 2 | 35−40
+1133%
|
3−4
−1133%
|
Elden Ring | 35−40
+680%
|
5−6
−680%
|
Grand Theft Auto V | 35−40
+850%
|
4−5
−850%
|
PLAYERUNKNOWN'S BATTLEGROUNDS | 170−180
+461%
|
30−35
−461%
|
Red Dead Redemption 2 | 21−24
+600%
|
3−4
−600%
|
World of Tanks | 150−160
+378%
|
30−35
−378%
|
1440p
Ultra Preset
Battlefield 5 | 45−50
+667%
|
6−7
−667%
|
Counter-Strike 2 | 18−20
+111%
|
9−10
−111%
|
Cyberpunk 2077 | 18−20
+375%
|
4−5
−375%
|
Far Cry 5 | 65−70
+550%
|
10−11
−550%
|
Forza Horizon 4 | 60−65
+900%
|
6−7
−900%
|
Metro Exodus | 50−55
+2500%
|
2−3
−2500%
|
The Witcher 3: Wild Hunt | 30−35
+433%
|
6−7
−433%
|
Valorant | 60−65
+362%
|
12−14
−362%
|
4K
High Preset
Counter-Strike 2 | 20−22
+567%
|
3−4
−567%
|
Dota 2 | 35−40
+129%
|
16−18
−129%
|
Elden Ring | 18−20
+800%
|
2−3
−800%
|
Grand Theft Auto V | 35−40
+144%
|
16−18
−144%
|
Metro Exodus | 16−18 | 0−1 |
PLAYERUNKNOWN'S BATTLEGROUNDS | 65−70
+393%
|
14
−393%
|
Red Dead Redemption 2 | 14−16
+367%
|
3−4
−367%
|
The Witcher 3: Wild Hunt | 35−40
+144%
|
16−18
−144%
|
4K
Ultra Preset
Battlefield 5 | 21−24
+475%
|
4−5
−475%
|
Counter-Strike 2 | 20−22
+567%
|
3−4
−567%
|
Cyberpunk 2077 | 7−8
+600%
|
1−2
−600%
|
Dota 2 | 35−40
+160%
|
15
−160%
|
Far Cry 5 | 30−33
+500%
|
5−6
−500%
|
Fortnite | 27−30
+833%
|
3−4
−833%
|
Forza Horizon 4 | 35−40
+1067%
|
3−4
−1067%
|
Valorant | 27−30
+625%
|
4−5
−625%
|
นี่คือวิธีที่ Quadro P3200 และ RX Vega 8 (Ryzen 2000/3000) แข่งขันกันในเกมยอดนิยม:
- Quadro P3200 เร็วกว่า 400% ในความละเอียด 1080p
- Quadro P3200 เร็วกว่า 155% ในความละเอียด 4K
นี่คือช่วงความแตกต่างของประสิทธิภาพที่สังเกตได้จากเกมยอดนิยม:
- ในเกม Metro Exodus ด้วยความละเอียด 1440p และการตั้งค่า Ultra Preset อุปกรณ์ Quadro P3200 เร็วกว่า 2500%
โดยรวมแล้ว ในเกมยอดนิยม:
- โดยไม่มีข้อยกเว้น Quadro P3200 เหนือกว่า RX Vega 8 (Ryzen 2000/3000) ในการทดสอบทั้ง 60 ครั้งของเรา
สรุปข้อดีและข้อเสีย
คะแนนประสิทธิภาพ | 22.88 | 4.52 |
ความใหม่ล่าสุด | 21 กุมภาพันธ์ 2018 | 26 ตุลาคม 2017 |
การผลิตชิปด้วยลิทอกราฟี | 16 nm | 14 nm |
การใช้พลังงาน (TDP) | 75 วัตต์ | 15 วัตต์ |
Quadro P3200 มีข้อได้เปรียบ มีคะแนนประสิทธิภาพรวมสูงกว่าถึง 406.2% และได้เปรียบด้านอายุการเปิดตัวอยู่ที่ 3 เดือน
ในทางกลับกัน RX Vega 8 (Ryzen 2000/3000) มีข้อได้เปรียบ มีกระบวนการลิทอกราฟีที่ก้าวหน้ากว่าถึง 14.3%และใช้พลังงานน้อยกว่าถึง 400%
Quadro P3200 เป็นตัวเลือกที่เราแนะนำ เนื่องจากมีประสิทธิภาพเหนือกว่า Radeon RX Vega 8 (Ryzen 2000/3000) ในการทดสอบประสิทธิภาพ
โปรดทราบว่า Quadro P3200 เป็นการ์ดจอเวิร์กสเตชันแบบพกพา ในขณะที่ Radeon RX Vega 8 (Ryzen 2000/3000) เป็นการ์ดจอเวิร์กสเตชันแบบพกพาเช่นกัน
หากคุณยังมีคำถามเกี่ยวกับการเลือก GPU ที่รีวิวไว้ สามารถถามได้ในส่วนความคิดเห็น แล้วเราจะตอบกลับ