GeForce MX250 เทียบกับ RTX 2070 Max-Q
คะแนนประสิทธิภาพรวม
เราได้เปรียบเทียบ GeForce RTX 2070 Max-Q และ GeForce MX250 โดยครอบคลุมสเปกและผลการทดสอบที่เกี่ยวข้องทั้งหมด
RTX 2070 Max-Q มีประสิทธิภาพดีกว่า MX250 อย่างมหาศาลถึง 383% ตามผลการทดสอบแบบรวมของเรา
รายละเอียดหลัก
สถาปัตยกรรม GPU, กลุ่มตลาด, ความคุ้มค่า และพารามิเตอร์ทั่วไปอื่นๆ ที่ถูกนำมาเปรียบเทียบ
ตำแหน่งในการจัดอันดับประสิทธิภาพ | 206 | 599 |
จัดอันดับตามความนิยม | ไม่ได้อยู่ใน 100 อันดับแรก | ไม่ได้อยู่ใน 100 อันดับแรก |
ประสิทธิภาพการใช้พลังงาน | 25.50 | 42.27 |
สถาปัตยกรรม | Turing (2018−2022) | Pascal (2016−2021) |
ชื่อรหัส GPU | TU106B | GP108B |
ประเภทตลาด | แล็ปท็อป | แล็ปท็อป |
วันที่วางจำหน่าย | 29 มกราคม 2019 (เมื่อ 6 ปี ปีที่แล้ว) | 20 กุมภาพันธ์ 2019 (เมื่อ 6 ปี ปีที่แล้ว) |
สเปกโดยละเอียด
พารามิเตอร์ทั่วไป เช่น จำนวนเชดเดอร์, ความถี่พื้นฐานและความถี่บูสต์ของ GPU, กระบวนการผลิต, ความเร็วการประมวลผลและการเท็กซ์เจอร์ โปรดทราบว่าการใช้พลังงานของการ์ดจอบางรุ่นอาจเกินกว่า TDP ที่กำหนดไว้ โดยเฉพาะเมื่อทำการโอเวอร์คล็อก
พาธไลน์ / คอร์ CUDA | 2304 | 384 |
ความเร็วสัญญาณนาฬิกาหลัก | 885 MHz | 937 MHz |
เพิ่มความเร็วสัญญาณนาฬิกา | 1185 MHz | 1038 MHz |
จำนวนทรานซิสเตอร์ | 10,800 million | 1,800 million |
เทคโนโลยีกระบวนการผลิต | 12 nm | 14 nm |
การใช้พลังงาน (TDP) | 80 Watt | 10 Watt |
อัตราการเติมเท็กซ์เจอร์ | 170.6 | 24.91 |
ประสิทธิภาพการประมวลผลจุดลอยตัว | 5.46 TFLOPS | 0.7972 TFLOPS |
ROPs | 64 | 16 |
TMUs | 144 | 24 |
Tensor Cores | 288 | ไม่มีข้อมูล |
Ray Tracing Cores | 36 | ไม่มีข้อมูล |
ฟอร์มแฟกเตอร์และความเข้ากันได้
ข้อมูลเกี่ยวกับความเข้ากันได้กับอุปกรณ์คอมพิวเตอร์อื่นๆ มีประโยชน์เมื่อเลือกการกำหนดค่าคอมพิวเตอร์ในอนาคตหรืออัปเกรดคอมพิวเตอร์ที่มีอยู่ สำหรับการ์ดจอเดสก์ท็อป จะรวมถึงอินเทอร์เฟซและบัส (ความเข้ากันได้กับเมนบอร์ด) และขั้วต่อไฟเพิ่มเติม (ความเข้ากันได้กับหน่วยจ่ายไฟ)
ขนาดแล็ปท็อป | large | large |
อินเทอร์เฟซ | PCIe 3.0 x16 | PCIe 3.0 x4 |
ขั้วต่อพลังงานเสริม | None | None |
ความจุและประเภทของ VRAM
พารามิเตอร์ของ VRAM ที่ติดตั้ง: ประเภท, ขนาด, บัส, ความถี่ และแบนด์วิดท์ที่ได้ GPU แบบรวมไม่มี VRAM เฉพาะ และใช้ส่วนแบ่งของ RAM ระบบแทน
ประเภทหน่วยความจำ | GDDR6 | GDDR5 |
จำนวน RAM สูงสุด | 8 จีบี | 2 จีบี |
ความกว้างบัสหน่วยความจำ | 256 Bit | 64 Bit |
ความเร็วของนาฬิกาหน่วยความจำ | 1500 MHz | 1502 MHz |
384.0 จีบี/s | 48.06 จีบี/s | |
หน่วยความจำที่ใช้ร่วมกัน | - | - |
การเชื่อมต่อและเอาต์พุต
ประเภทและจำนวนของตัวเชื่อมต่อวิดีโอที่มีใน GPU ที่รีวิว โดยทั่วไป ข้อมูลในส่วนนี้จะแม่นยำเฉพาะสำหรับการ์ดเดสก์ท็อปแบบอ้างอิง (หรือที่เรียกว่า Founders Edition สำหรับชิป NVIDIA) ผู้ผลิต OEM อาจเปลี่ยนแปลงจำนวนและประเภทของพอร์ตเอาต์พุต ในขณะที่สำหรับการ์ดโน้ตบุ๊ก ความพร้อมใช้งานของพอร์ตวิดีโอบางประเภทขึ้นอยู่กับรุ่นของแล็ปท็อปมากกว่าตัวการ์ดเอง
ขั้วต่อจอแสดงผล | No outputs | Portable Device Dependent |
รองรับ G-SYNC | + | - |
เทคโนโลยีที่รองรับ
โซลูชันทางเทคโนโลยีที่รองรับ ข้อมูลนี้จะมีประโยชน์หากคุณต้องการเทคโนโลยีเฉพาะสำหรับการใช้งานของคุณ
VR Ready | + | ไม่มีข้อมูล |
ความเข้ากันได้ของ API และ SDK
รายการ API สำหรับการประมวลผล 3D และการประมวลผลทั่วไปที่รองรับ รวมถึงเวอร์ชันเฉพาะ
DirectX | 12 Ultimate (12_1) | 12 (12_1) |
รุ่นเชดเดอร์ | 6.5 | 6.7 (6.4) |
OpenGL | 4.6 | 4.6 |
OpenCL | 1.2 | 3.0 |
Vulkan | 1.2.131 | 1.3 |
CUDA | 7.5 | 6.1 |
DLSS | + | - |
ประสิทธิภาพการทดสอบแบบสังเคราะห์
การเปรียบเทียบผลการทดสอบที่ไม่เกี่ยวกับเกม โดยคะแนนรวมวัดบนมาตราส่วน 0-100 คะแนน
คะแนนรวมของการทดสอบแบบสังเคราะห์
นี่คือคะแนนการทดสอบแบบรวมของเรา
Passmark
นี่คือการทดสอบ GPU ที่พบได้บ่อยที่สุด โดยจะประเมินการ์ดจอภายใต้ภาระงานหลากหลายประเภท โดยให้การทดสอบแยกต่างหาก 4 ครั้งสำหรับ Direct3D เวอร์ชัน 9, 10, 11 และ 12 (เวอร์ชันสุดท้ายใช้ความละเอียด 4K หากทำได้) รวมถึงการทดสอบเพิ่มเติมที่ใช้คุณสมบัติ DirectCompute
3DMark 11 Performance GPU
3DMark 11 เป็นการทดสอบ DirectX 11 เก่าโดย Futuremark ซึ่งประกอบไปด้วย 4 การทดสอบจาก 2 ฉาก: ฉากแรกแสดงการสำรวจซากเรือจมใต้น้ำโดยเรือดำน้ำหลายลำ อีกฉากหนึ่งแสดงวัดร้างลึกเข้าไปในป่าทึบ การทดสอบทั้งหมดใช้แสงวอลุ่ม (Volumetric Lighting) และ Tessellation อย่างหนัก แม้จะใช้ความละเอียด 1280x720 แต่ก็ยังค่อนข้างกินทรัพยากรฮาร์ดแวร์ ยกเลิกไปในเดือนมกราคม 2020 และถูกแทนที่โดย Time Spy
3DMark Vantage Performance
3DMark Vantage เป็นการทดสอบ DirectX 10 เก่าที่ใช้ความละเอียด 1280x1024 โดยมีฉากหลัก 2 ฉาก: ฉากแรกแสดงเด็กผู้หญิงคนหนึ่งหนีออกจากฐานทัพในถ้ำกลางทะเล และอีกฉากหนึ่งแสดงยานอวกาศบุกโจมตีดาวเคราะห์ที่ไร้การป้องกัน ยกเลิกไปในเดือนเมษายน 2017 และแนะนำให้ใช้การทดสอบ Time Spy แทน
3DMark Fire Strike Graphics
Fire Strike เป็นการทดสอบ DirectX 11 สำหรับเกมพีซี ประกอบด้วยการทดสอบ 2 ฉากที่แสดงการต่อสู้ระหว่างมนุษย์และสิ่งมีชีวิตที่ทำจากลาวา ใช้ความละเอียด 1920x1080 และสามารถแสดงกราฟิกที่สมจริง กินทรัพยากรฮาร์ดแวร์สูง
3DMark Cloud Gate GPU
Cloud Gate เป็นการทดสอบ DirectX 11 ระดับ 10 ที่ล้าสมัย ซึ่งเคยใช้สำหรับพีซีตามบ้านและแล็ปท็อปพื้นฐาน แสดงฉากการปล่อยยานอวกาศผ่านอุปกรณ์เทเลพอร์ตอวกาศประหลาด ด้วยความละเอียด 1280x720 เช่นเดียวกับ Ice Storm Benchmark ถูกยกเลิกในเดือนมกราคม 2020 และถูกแทนที่โดย 3DMark Night Raid
3DMark Ice Storm GPU
Ice Storm Graphics เป็นการทดสอบล้าสมัยในชุดการทดสอบ 3DMark ซึ่งเคยใช้วัดประสิทธิภาพของแล็ปท็อประดับเริ่มต้นและแท็บเล็ต Windows ใช้คุณสมบัติของ DirectX 11 ระดับ 9 ในการแสดงฉากต่อสู้ระหว่างยานอวกาศสองกองใกล้กับดาวเคราะห์น้ำแข็งที่ความละเอียด 1280x720 ยกเลิกไปในเดือนมกราคม 2020 และถูกแทนที่โดย 3DMark Night Raid
3DMark Time Spy Graphics
ประสิทธิภาพในการเล่นเกม
มาดูกันว่าการ์ดจอที่นำมาเปรียบเทียบเหมาะสำหรับการเล่นเกมมากน้อยแค่ไหน โดยผลการทดสอบเกมเฉพาะจะวัดเป็นเฟรมต่อวินาที (FPS)
ค่า FPS เฉลี่ยจากเกมพีซีทั้งหมด
นี่คือค่าเฉลี่ยเฟรมต่อวินาทีจากเกมยอดนิยมหลากหลายเกมในหลายความละเอียด:
Full HD | 98
+326%
| 23
−326%
|
1440p | 60
+400%
| 12−14
−400%
|
4K | 39
+388%
| 8−9
−388%
|
ประสิทธิภาพ FPS ในเกมยอดนิยม
Full HD
Low Preset
Counter-Strike 2 | 160−170
+116%
|
75
−116%
|
Cyberpunk 2077 | 60−65
+343%
|
14
−343%
|
Hogwarts Legacy | 60−65
+300%
|
15
−300%
|
Full HD
Medium Preset
Battlefield 5 | 92
+283%
|
24
−283%
|
Counter-Strike 2 | 160−170
+295%
|
41
−295%
|
Cyberpunk 2077 | 60−65
+464%
|
11
−464%
|
Far Cry 5 | 103
+442%
|
19
−442%
|
Fortnite | 122
+122%
|
55
−122%
|
Forza Horizon 4 | 121
+290%
|
31
−290%
|
Forza Horizon 5 | 85−90
+424%
|
17
−424%
|
Hogwarts Legacy | 60−65
+650%
|
8
−650%
|
PLAYERUNKNOWN'S BATTLEGROUNDS | 148
+429%
|
28
−429%
|
Valorant | 180−190
+54.2%
|
118
−54.2%
|
Full HD
High Preset
Battlefield 5 | 88
+363%
|
19
−363%
|
Counter-Strike 2 | 160−170
+671%
|
21
−671%
|
Counter-Strike: Global Offensive | 270−280
+178%
|
95−100
−178%
|
Cyberpunk 2077 | 60−65
+417%
|
12−14
−417%
|
Dota 2 | 127
+98.4%
|
64
−98.4%
|
Far Cry 5 | 95
+459%
|
17
−459%
|
Fortnite | 115
+360%
|
25
−360%
|
Forza Horizon 4 | 118
+392%
|
24
−392%
|
Forza Horizon 5 | 85−90
+585%
|
13
−585%
|
Grand Theft Auto V | 90
+221%
|
28
−221%
|
Hogwarts Legacy | 60−65
+445%
|
10−12
−445%
|
Metro Exodus | 61
+771%
|
7
−771%
|
PLAYERUNKNOWN'S BATTLEGROUNDS | 128
+457%
|
23
−457%
|
The Witcher 3: Wild Hunt | 122
+481%
|
21
−481%
|
Valorant | 180−190
+58.3%
|
115
−58.3%
|
Full HD
Ultra Preset
Battlefield 5 | 89
+536%
|
14
−536%
|
Cyberpunk 2077 | 60−65
+417%
|
12−14
−417%
|
Dota 2 | 121
+112%
|
57
−112%
|
Far Cry 5 | 90
+463%
|
16
−463%
|
Forza Horizon 4 | 98
+513%
|
16
−513%
|
Hogwarts Legacy | 60−65
+445%
|
10−12
−445%
|
PLAYERUNKNOWN'S BATTLEGROUNDS | 93
+389%
|
19
−389%
|
The Witcher 3: Wild Hunt | 64
+433%
|
12
−433%
|
Valorant | 129
+92.5%
|
65−70
−92.5%
|
Full HD
Epic Preset
Fortnite | 100
+355%
|
22
−355%
|
1440p
High Preset
Counter-Strike 2 | 65−70
+622%
|
9−10
−622%
|
Counter-Strike: Global Offensive | 190−200
+336%
|
45−50
−336%
|
Grand Theft Auto V | 50−55
+657%
|
7−8
−657%
|
Metro Exodus | 35−40
+660%
|
5−6
−660%
|
PLAYERUNKNOWN'S BATTLEGROUNDS | 170−180
+386%
|
35−40
−386%
|
Valorant | 220−230
+235%
|
65−70
−235%
|
1440p
Ultra Preset
Battlefield 5 | 75
+733%
|
9−10
−733%
|
Cyberpunk 2077 | 27−30
+480%
|
5−6
−480%
|
Far Cry 5 | 66
+408%
|
12−14
−408%
|
Forza Horizon 4 | 70−75
+429%
|
14−16
−429%
|
Hogwarts Legacy | 30−35
+433%
|
6−7
−433%
|
The Witcher 3: Wild Hunt | 45−50
+500%
|
8−9
−500%
|
1440p
Epic Preset
Fortnite | 76
+533%
|
12−14
−533%
|
4K
High Preset
Counter-Strike 2 | 30−33
+400%
|
6−7
−400%
|
Grand Theft Auto V | 69
+306%
|
16−18
−306%
|
Hogwarts Legacy | 18−20
+1700%
|
1−2
−1700%
|
Metro Exodus | 22
+2100%
|
1−2
−2100%
|
The Witcher 3: Wild Hunt | 45
+1400%
|
3−4
−1400%
|
Valorant | 160−170
+476%
|
27−30
−476%
|
4K
Ultra Preset
Battlefield 5 | 42
+950%
|
4−5
−950%
|
Counter-Strike 2 | 30−33
+400%
|
6−7
−400%
|
Cyberpunk 2077 | 12−14
+550%
|
2−3
−550%
|
Dota 2 | 93
+365%
|
20−22
−365%
|
Far Cry 5 | 33
+371%
|
7−8
−371%
|
Forza Horizon 4 | 50−55
+456%
|
9−10
−456%
|
Hogwarts Legacy | 18−20
+1700%
|
1−2
−1700%
|
PLAYERUNKNOWN'S BATTLEGROUNDS | 36
+500%
|
6−7
−500%
|
4K
Epic Preset
Fortnite | 32
+433%
|
6−7
−433%
|
นี่คือวิธีที่ RTX 2070 Max-Q และ GeForce MX250 แข่งขันกันในเกมยอดนิยม:
- RTX 2070 Max-Q เร็วกว่า 326% ในความละเอียด 1080p
- RTX 2070 Max-Q เร็วกว่า 400% ในความละเอียด 1440p
- RTX 2070 Max-Q เร็วกว่า 388% ในความละเอียด 4K
นี่คือช่วงความแตกต่างของประสิทธิภาพที่สังเกตได้จากเกมยอดนิยม:
- ในเกม Metro Exodus ด้วยความละเอียด 4K และการตั้งค่า High Preset อุปกรณ์ RTX 2070 Max-Q เร็วกว่า 2100%
โดยรวมแล้ว ในเกมยอดนิยม:
- โดยไม่มีข้อยกเว้น RTX 2070 Max-Q เหนือกว่า GeForce MX250 ในการทดสอบทั้ง 64 ครั้งของเรา
สรุปข้อดีและข้อเสีย
คะแนนประสิทธิภาพ | 27.80 | 5.76 |
จำนวน RAM สูงสุด | 8 จีบี | 2 จีบี |
การผลิตชิปด้วยลิทอกราฟี | 12 nm | 14 nm |
การใช้พลังงาน (TDP) | 80 วัตต์ | 10 วัตต์ |
RTX 2070 Max-Q มีข้อได้เปรียบ มีคะแนนประสิทธิภาพรวมสูงกว่าถึง 382.6% และและมีกระบวนการลิทอกราฟีที่ก้าวหน้ากว่าถึง 16.7%
ในทางกลับกัน GeForce MX250 มีข้อได้เปรียบ ใช้พลังงานน้อยกว่าถึง 700%
GeForce RTX 2070 Max-Q เป็นตัวเลือกที่เราแนะนำ เนื่องจากมีประสิทธิภาพเหนือกว่า GeForce MX250 ในการทดสอบประสิทธิภาพ