GeForce RTX 5090 Mobile เทียบกับ GTX 1050 Ti Max-Q
คะแนนประสิทธิภาพรวม
เราได้เปรียบเทียบ GeForce GTX 1050 Ti Max-Q และ GeForce RTX 5090 Mobile โดยครอบคลุมสเปกและผลการทดสอบที่เกี่ยวข้องทั้งหมด
RTX 5090 Mobile มีประสิทธิภาพดีกว่า 1050 Ti Max-Q อย่างมหาศาลถึง 446% ตามผลการทดสอบแบบรวมของเรา
รายละเอียดหลัก
สถาปัตยกรรม GPU, กลุ่มตลาด, ความคุ้มค่า และพารามิเตอร์ทั่วไปอื่นๆ ที่ถูกนำมาเปรียบเทียบ
| ตำแหน่งในการจัดอันดับประสิทธิภาพ | 429 | 20 |
| จัดอันดับตามความนิยม | ไม่ได้อยู่ใน 100 อันดับแรก | ไม่ได้อยู่ใน 100 อันดับแรก |
| ประสิทธิภาพการใช้พลังงาน | 13.01 | 56.06 |
| สถาปัตยกรรม | Pascal (2016−2021) | Blackwell 2.0 (2025−2026) |
| ชื่อรหัส GPU | GP107 | GB203 |
| ประเภทตลาด | แล็ปท็อป | แล็ปท็อป |
| วันที่วางจำหน่าย | 3 มกราคม 2018 (เมื่อ 7 ปี ปีที่แล้ว) | 27 มีนาคม 2025 (ไม่เกินหนึ่งปีที่ผ่านมา) |
สเปกโดยละเอียด
พารามิเตอร์ทั่วไป เช่น จำนวนเชดเดอร์, ความถี่พื้นฐานและความถี่บูสต์ของ GPU, กระบวนการผลิต, ความเร็วการประมวลผลและการเท็กซ์เจอร์ โปรดทราบว่าการใช้พลังงานของการ์ดจอบางรุ่นอาจเกินกว่า TDP ที่กำหนดไว้ โดยเฉพาะเมื่อทำการโอเวอร์คล็อก
| พาธไลน์ / คอร์ CUDA | 768 | 10496 |
| ความเร็วสัญญาณนาฬิกาหลัก | 1152 MHz | 990 MHz |
| เพิ่มความเร็วสัญญาณนาฬิกา | 1417 MHz | 1515 MHz |
| จำนวนทรานซิสเตอร์ | 3,300 million | 45,600 million |
| เทคโนโลยีกระบวนการผลิต | 14 nm | 5 nm |
| การใช้พลังงาน (TDP) | 75 Watt | 95 Watt |
| อัตราการเติมเท็กซ์เจอร์ | 68.02 | 496.9 |
| ประสิทธิภาพการประมวลผลจุดลอยตัว | 2.177 TFLOPS | 31.8 TFLOPS |
| ROPs | 32 | 112 |
| TMUs | 48 | 328 |
| Tensor Cores | ไม่มีข้อมูล | 328 |
| Ray Tracing Cores | ไม่มีข้อมูล | 82 |
| L1 Cache | 288 เคบี | 10.3 เอ็มบี |
| L2 Cache | 1024 เคบี | 64 เอ็มบี |
ฟอร์มแฟกเตอร์และความเข้ากันได้
ข้อมูลเกี่ยวกับความเข้ากันได้กับอุปกรณ์คอมพิวเตอร์อื่นๆ มีประโยชน์เมื่อเลือกการกำหนดค่าคอมพิวเตอร์ในอนาคตหรืออัปเกรดคอมพิวเตอร์ที่มีอยู่ สำหรับการ์ดจอเดสก์ท็อป จะรวมถึงอินเทอร์เฟซและบัส (ความเข้ากันได้กับเมนบอร์ด) และขั้วต่อไฟเพิ่มเติม (ความเข้ากันได้กับหน่วยจ่ายไฟ)
| ขนาดแล็ปท็อป | medium sized | large |
| อินเทอร์เฟซ | PCIe 3.0 x16 | PCIe 5.0 x16 |
| ขั้วต่อพลังงานเสริม | None | None |
ความจุและประเภทของ VRAM
พารามิเตอร์ของ VRAM ที่ติดตั้ง: ประเภท, ขนาด, บัส, ความถี่ และแบนด์วิดท์ที่ได้ GPU แบบรวมไม่มี VRAM เฉพาะ และใช้ส่วนแบ่งของ RAM ระบบแทน
| ประเภทหน่วยความจำ | GDDR5 | GDDR7 |
| จำนวน RAM สูงสุด | 4 จีบี | 24 จีบี |
| ความกว้างบัสหน่วยความจำ | 128 Bit | 256 Bit |
| ความเร็วของนาฬิกาหน่วยความจำ | 1752 MHz | 1750 MHz |
| 112.1 จีบี/s | 896.0 จีบี/s | |
| หน่วยความจำที่ใช้ร่วมกัน | - | - |
| Resizable BAR | - | + |
การเชื่อมต่อและเอาต์พุต
ประเภทและจำนวนของตัวเชื่อมต่อวิดีโอที่มีใน GPU ที่รีวิว โดยทั่วไป ข้อมูลในส่วนนี้จะแม่นยำเฉพาะสำหรับการ์ดเดสก์ท็อปแบบอ้างอิง (หรือที่เรียกว่า Founders Edition สำหรับชิป NVIDIA) ผู้ผลิต OEM อาจเปลี่ยนแปลงจำนวนและประเภทของพอร์ตเอาต์พุต ในขณะที่สำหรับการ์ดโน้ตบุ๊ก ความพร้อมใช้งานของพอร์ตวิดีโอบางประเภทขึ้นอยู่กับรุ่นของแล็ปท็อปมากกว่าตัวการ์ดเอง
| ขั้วต่อจอแสดงผล | No outputs | Portable Device Dependent |
| รองรับ G-SYNC | + | - |
เทคโนโลยีที่รองรับ
โซลูชันทางเทคโนโลยีที่รองรับ ข้อมูลนี้จะมีประโยชน์หากคุณต้องการเทคโนโลยีเฉพาะสำหรับการใช้งานของคุณ
| VR Ready | + | ไม่มีข้อมูล |
ความเข้ากันได้ของ API และ SDK
รายการ API สำหรับการประมวลผล 3D และการประมวลผลทั่วไปที่รองรับ รวมถึงเวอร์ชันเฉพาะ
| DirectX | 12 (12_1) | 12 Ultimate (12_2) |
| รุ่นเชดเดอร์ | 6.4 | 6.8 |
| OpenGL | 4.6 | 4.6 |
| OpenCL | 1.2 | 3.0 |
| Vulkan | 1.2.131 | 1.4 |
| CUDA | 6.1 | 12.0 |
| DLSS | - | + |
ประสิทธิภาพการทดสอบแบบสังเคราะห์
การเปรียบเทียบผลการทดสอบที่ไม่เกี่ยวกับเกม โดยคะแนนรวมวัดบนมาตราส่วน 0-100 คะแนน
คะแนนรวมของการทดสอบแบบสังเคราะห์
นี่คือคะแนนการทดสอบแบบรวมของเรา
Passmark
นี่คือการทดสอบ GPU ที่พบได้บ่อยที่สุด โดยจะประเมินการ์ดจอภายใต้ภาระงานหลากหลายประเภท โดยให้การทดสอบแยกต่างหาก 4 ครั้งสำหรับ Direct3D เวอร์ชัน 9, 10, 11 และ 12 (เวอร์ชันสุดท้ายใช้ความละเอียด 4K หากทำได้) รวมถึงการทดสอบเพิ่มเติมที่ใช้คุณสมบัติ DirectCompute
3DMark 11 Performance GPU
3DMark 11 เป็นการทดสอบ DirectX 11 เก่าโดย Futuremark ซึ่งประกอบไปด้วย 4 การทดสอบจาก 2 ฉาก: ฉากแรกแสดงการสำรวจซากเรือจมใต้น้ำโดยเรือดำน้ำหลายลำ อีกฉากหนึ่งแสดงวัดร้างลึกเข้าไปในป่าทึบ การทดสอบทั้งหมดใช้แสงวอลุ่ม (Volumetric Lighting) และ Tessellation อย่างหนัก แม้จะใช้ความละเอียด 1280x720 แต่ก็ยังค่อนข้างกินทรัพยากรฮาร์ดแวร์ ยกเลิกไปในเดือนมกราคม 2020 และถูกแทนที่โดย Time Spy
3DMark Vantage Performance
3DMark Vantage เป็นการทดสอบ DirectX 10 เก่าที่ใช้ความละเอียด 1280x1024 โดยมีฉากหลัก 2 ฉาก: ฉากแรกแสดงเด็กผู้หญิงคนหนึ่งหนีออกจากฐานทัพในถ้ำกลางทะเล และอีกฉากหนึ่งแสดงยานอวกาศบุกโจมตีดาวเคราะห์ที่ไร้การป้องกัน ยกเลิกไปในเดือนเมษายน 2017 และแนะนำให้ใช้การทดสอบ Time Spy แทน
3DMark Fire Strike Graphics
Fire Strike เป็นการทดสอบ DirectX 11 สำหรับเกมพีซี ประกอบด้วยการทดสอบ 2 ฉากที่แสดงการต่อสู้ระหว่างมนุษย์และสิ่งมีชีวิตที่ทำจากลาวา ใช้ความละเอียด 1920x1080 และสามารถแสดงกราฟิกที่สมจริง กินทรัพยากรฮาร์ดแวร์สูง
3DMark Cloud Gate GPU
Cloud Gate เป็นการทดสอบ DirectX 11 ระดับ 10 ที่ล้าสมัย ซึ่งเคยใช้สำหรับพีซีตามบ้านและแล็ปท็อปพื้นฐาน แสดงฉากการปล่อยยานอวกาศผ่านอุปกรณ์เทเลพอร์ตอวกาศประหลาด ด้วยความละเอียด 1280x720 เช่นเดียวกับ Ice Storm Benchmark ถูกยกเลิกในเดือนมกราคม 2020 และถูกแทนที่โดย 3DMark Night Raid
3DMark Ice Storm GPU
Ice Storm Graphics เป็นการทดสอบล้าสมัยในชุดการทดสอบ 3DMark ซึ่งเคยใช้วัดประสิทธิภาพของแล็ปท็อประดับเริ่มต้นและแท็บเล็ต Windows ใช้คุณสมบัติของ DirectX 11 ระดับ 9 ในการแสดงฉากต่อสู้ระหว่างยานอวกาศสองกองใกล้กับดาวเคราะห์น้ำแข็งที่ความละเอียด 1280x720 ยกเลิกไปในเดือนมกราคม 2020 และถูกแทนที่โดย 3DMark Night Raid
ประสิทธิภาพในการเล่นเกม
มาดูกันว่าการ์ดจอที่นำมาเปรียบเทียบเหมาะสำหรับการเล่นเกมมากน้อยแค่ไหน โดยผลการทดสอบเกมเฉพาะจะวัดเป็นเฟรมต่อวินาที (FPS)
ค่า FPS เฉลี่ยจากเกมพีซีทั้งหมด
นี่คือค่าเฉลี่ยเฟรมต่อวินาทีจากเกมยอดนิยมหลากหลายเกมในหลายความละเอียด:
| Full HD | 57
−184%
| 162
+184%
|
| 1440p | 29
−283%
| 111
+283%
|
| 4K | 19
−242%
| 65
+242%
|
ประสิทธิภาพ FPS ในเกมยอดนิยม
Full HD
Low
| Counter-Strike 2 | 70−75
−343%
|
300−350
+343%
|
| Cyberpunk 2077 | 27−30
−556%
|
170−180
+556%
|
Full HD
Medium
| Battlefield 5 | 57
−219%
|
180−190
+219%
|
| Counter-Strike 2 | 70−75
−442%
|
390
+442%
|
| Cyberpunk 2077 | 27−30
−556%
|
170−180
+556%
|
| Escape from Tarkov | 50−55
−128%
|
120−130
+128%
|
| Far Cry 5 | 48
−325%
|
200−210
+325%
|
| Fortnite | 75−80
−303%
|
300−350
+303%
|
| Forza Horizon 4 | 67
−319%
|
280−290
+319%
|
| Forza Horizon 5 | 40−45
−418%
|
200−210
+418%
|
| PLAYERUNKNOWN'S BATTLEGROUNDS | 45−50
−270%
|
170−180
+270%
|
| Valorant | 110−120
−264%
|
400−450
+264%
|
Full HD
High
| Battlefield 5 | 48
−279%
|
180−190
+279%
|
| Counter-Strike 2 | 70−75
−318%
|
301
+318%
|
| Counter-Strike: Global Offensive | 180−190
−54.4%
|
270−280
+54.4%
|
| Cyberpunk 2077 | 27−30
−556%
|
170−180
+556%
|
| Dota 2 | 98
−410%
|
500−550
+410%
|
| Escape from Tarkov | 50−55
−128%
|
120−130
+128%
|
| Far Cry 5 | 44
−364%
|
200−210
+364%
|
| Fortnite | 75−80
−303%
|
300−350
+303%
|
| Forza Horizon 4 | 61
−361%
|
280−290
+361%
|
| Forza Horizon 5 | 40−45
−418%
|
200−210
+418%
|
| Grand Theft Auto V | 57
−202%
|
172
+202%
|
| Metro Exodus | 31
−481%
|
180−190
+481%
|
| PLAYERUNKNOWN'S BATTLEGROUNDS | 45−50
−270%
|
170−180
+270%
|
| The Witcher 3: Wild Hunt | 46
−572%
|
300−350
+572%
|
| Valorant | 110−120
−264%
|
400−450
+264%
|
Full HD
Ultra
| Battlefield 5 | 45
−304%
|
180−190
+304%
|
| Cyberpunk 2077 | 27−30
−556%
|
170−180
+556%
|
| Dota 2 | 94
−432%
|
500−550
+432%
|
| Escape from Tarkov | 50−55
−128%
|
120−130
+128%
|
| Far Cry 5 | 38
−437%
|
200−210
+437%
|
| Forza Horizon 4 | 47
−498%
|
280−290
+498%
|
| PLAYERUNKNOWN'S BATTLEGROUNDS | 45−50
−270%
|
170−180
+270%
|
| The Witcher 3: Wild Hunt | 25
−784%
|
221
+784%
|
| Valorant | 110−120
−436%
|
600−650
+436%
|
Full HD
Epic
| Fortnite | 75−80
−303%
|
300−350
+303%
|
1440p
High
| Counter-Strike 2 | 24−27
−796%
|
224
+796%
|
| Counter-Strike: Global Offensive | 95−100
−432%
|
500−550
+432%
|
| Grand Theft Auto V | 20−22
−685%
|
157
+685%
|
| Metro Exodus | 14−16
−720%
|
120−130
+720%
|
| PLAYERUNKNOWN'S BATTLEGROUNDS | 100−110
−405%
|
550−600
+405%
|
| Valorant | 130−140
−257%
|
450−500
+257%
|
1440p
Ultra
| Battlefield 5 | 35−40
−420%
|
180−190
+420%
|
| Cyberpunk 2077 | 10−12
−836%
|
100−110
+836%
|
| Escape from Tarkov | 24−27
−362%
|
120−130
+362%
|
| Far Cry 5 | 27−30
−546%
|
180−190
+546%
|
| Forza Horizon 4 | 30−35
−694%
|
240−250
+694%
|
| The Witcher 3: Wild Hunt | 18−20
−874%
|
185
+874%
|
1440p
Epic
| Fortnite | 27−30
−439%
|
150−160
+439%
|
4K
High
| Counter-Strike 2 | 8−9
−1125%
|
95−100
+1125%
|
| Grand Theft Auto V | 36
−386%
|
175
+386%
|
| Metro Exodus | 5
−1520%
|
80−85
+1520%
|
| The Witcher 3: Wild Hunt | 16
−706%
|
129
+706%
|
| Valorant | 70−75
−370%
|
300−350
+370%
|
4K
Ultra
| Battlefield 5 | 17
−694%
|
130−140
+694%
|
| Counter-Strike 2 | 8−9
−400%
|
40−45
+400%
|
| Cyberpunk 2077 | 4−5
−1150%
|
50−55
+1150%
|
| Dota 2 | 46
−443%
|
250−260
+443%
|
| Escape from Tarkov | 12−14
−583%
|
80−85
+583%
|
| Far Cry 5 | 13
−815%
|
110−120
+815%
|
| Forza Horizon 4 | 20
−905%
|
200−210
+905%
|
| PLAYERUNKNOWN'S BATTLEGROUNDS | 12−14
−700%
|
95−100
+700%
|
4K
Epic
| Fortnite | 12−14
−508%
|
75−80
+508%
|
นี่คือวิธีที่ GTX 1050 Ti Max-Q และ RTX 5090 Mobile แข่งขันกันในเกมยอดนิยม:
- RTX 5090 Mobile เร็วกว่า 184% ในความละเอียด 1080p
- RTX 5090 Mobile เร็วกว่า 283% ในความละเอียด 1440p
- RTX 5090 Mobile เร็วกว่า 242% ในความละเอียด 4K
นี่คือช่วงความแตกต่างของประสิทธิภาพที่สังเกตได้จากเกมยอดนิยม:
- ในเกม Metro Exodus ด้วยความละเอียด 4K และการตั้งค่า High Preset อุปกรณ์ RTX 5090 Mobile เร็วกว่า 1520%
โดยรวมแล้ว ในเกมยอดนิยม:
- โดยไม่มีข้อยกเว้น RTX 5090 Mobile เหนือกว่า GTX 1050 Ti Max-Q ในการทดสอบทั้ง 58 ครั้งของเรา
สรุปข้อดีและข้อเสีย
| คะแนนประสิทธิภาพ | 12.71 | 69.38 |
| ความใหม่ล่าสุด | 3 มกราคม 2018 | 27 มีนาคม 2025 |
| จำนวน RAM สูงสุด | 4 จีบี | 24 จีบี |
| การผลิตชิปด้วยลิทอกราฟี | 14 nm | 5 nm |
| การใช้พลังงาน (TDP) | 75 วัตต์ | 95 วัตต์ |
GTX 1050 Ti Max-Q มีข้อได้เปรียบ ใช้พลังงานน้อยกว่าถึง 26.7%
ในทางกลับกัน RTX 5090 Mobile มีข้อได้เปรียบ มีคะแนนประสิทธิภาพรวมสูงกว่าถึง 445.9% และได้เปรียบด้านอายุการเปิดตัวอยู่ที่ 7 ปี และและมีกระบวนการลิทอกราฟีที่ก้าวหน้ากว่าถึง 180%
GeForce RTX 5090 Mobile เป็นตัวเลือกที่เราแนะนำ เนื่องจากมีประสิทธิภาพเหนือกว่า GeForce GTX 1050 Ti Max-Q ในการทดสอบประสิทธิภาพ
