Quadro K1000M vs RTX A2000
Zagregowany wynik wydajności
Porównaliśmy Quadro K1000M z RTX A2000, w tym specyfikacje i dane dotyczące wydajności.
RTX A2000 przewyższa K1000M o aż 1660% w oparciu o nasze zagregowane wyniki benchmarku.
Podstawowe szczegóły
Informacje o typie (dla komputerów stacjonarnych lub laptopów) i architekturze Quadro K1000M i RTX A2000, a także o czasie rozpoczęcia sprzedaży i cenie w tamtym czasie.
Miejsce w rankingu wydajności | 878 | 137 |
Miejsce według popularności | nie w top-100 | nie w top-100 |
Ocena efektywności kosztowej | 0.37 | 85.89 |
Wydajność energetyczna | 3.12 | 35.28 |
Architektura | Kepler (2012−2018) | Ampere (2020−2024) |
Kryptonim | GK107 | GA106 |
Typ | Do mobilnych stacji roboczych | Do stacji roboczych |
Data wydania | 1 czerwca 2012 (12 lat temu) | 10 sierpnia 2021 (3 lata temu) |
Cena w momencie wydania | $119.90 | $449 |
Ocena efektywności kosztowej
Aby uzyskać indeks, porównujemy wydajność kart graficznych i ich koszt, biorąc pod uwagę koszt innych kart graficznych.
RTX A2000 ma 23114% lepszy stosunek ceny do jakości niż K1000M.
Szczegółowe specyfikacje
Parametry ogólne Quadro K1000M i RTX A2000: liczba shaderów, częstotliwość karty graficznej, proces technologiczny, szybkość teksturowania i obliczeń. Pośrednio świadczą o wydajności Quadro K1000M i RTX A2000, chociaż dla dokładnej oceny należy wziąć pod uwagę wyniki benchmarków i testów w grach.
Ilość jednostek cieniujących | 192 | 3328 |
Częstotliwość rdzenia | 850 MHz | 562 MHz |
Częstotliwość w trybie Boost | brak danych | 1200 MHz |
Ilość tranzystorów | 1,270 million | 12,000 million |
Proces technologiczny | 28 nm | 8 nm |
Pobór mocy (TDP) | 45 Watt | 70 Watt |
Szybkość wypełniania teksturami | 13.60 | 124.8 |
Wydajność zmiennoprzecinkowa | 0.3264 TFLOPS | 7.987 TFLOPS |
ROPs | 16 | 48 |
TMUs | 16 | 104 |
Tensor Cores | brak danych | 104 |
Ray Tracing Cores | brak danych | 26 |
Współczynnik kształtu i kompatybilność
Informacje na temat zgodności Quadro K1000M i RTX A2000 z innymi elementami komputera. Przydatne na przykład przy wyborze przyszłej konfiguracji komputera lub aktualizacji istniejącej. W przypadku kart graficznych do komputerów stacjonarnych jest to interfejs i magistrala połączeń (kompatybilność z płytą główną), fizyczne wymiary karty wideo (kompatybilność z płytą główną i obudową), dodatkowe złącza zasilania (kompatybilność z zasilaczem).
Rozmiar laptopa | medium sized | brak danych |
Interfejs | MXM-A (3.0) | PCIe 4.0 x16 |
Długość | brak danych | 167 mm |
Grubość | brak danych | 2-slot |
Dodatkowe złącza zasilania | brak danych | brak |
Pojemność i typ pamięci VRAM
Parametry pamięci zainstalowanej na Quadro K1000M i RTX A2000: jej typ, rozmiar, magistrala, częstotliwość i przepustowość. Zauważ, że karty graficzne zintegrowane z procesorami nie mają dedykowanej pamięci i używają wspólnej części systemowej pamięci RAM.
Typ pamięci | DDR3 | GDDR6 |
Maksymalna ilość pamięci | 2 GB | 6 GB |
Szerokość magistrali pamięci | 128 Bit | 192 Bit |
Częstotliwość pamięci | 900 MHz | 1500 MHz |
Przepustowość pamięci | 28.8 GB/s | 288.0 GB/s |
Pamięć współdzielona | - | - |
Łączność i wyjścia
Lista złącz wideo dostępnych na Quadro K1000M i RTX A2000. Z reguły ta sekcja dotyczy tylko referencyjnych kart graficznych na komputery stacjonarne, ponieważ w przypadku notebooków dostępność niektórych wyjść wideo zależy od modelu laptopa.
Złącza wideo | No outputs | 4x mini-DisplayPort 1.4a |
Obsługiwane technologie
Wymienione są tutaj obsługiwane Quadro K1000M i RTX A2000 rozwiązania technologiczne oraz interfejsy API. Takie informacje będą potrzebne, jeśli do karty graficznej wymaga się obsługi określonych technologii.
Optimus | + | - |
Zgodność z API
Interfejsy API obsługiwane przez Quadro K1000M i RTX A2000, włączając ich poszczególne wersje.
DirectX | 12 (11_0) | 12 Ultimate (12_2) |
Model cieniujący | 5.1 | 6.8 |
OpenGL | 4.6 | 4.6 |
OpenCL | 1.2 | 3.0 |
Vulkan | + | 1.3 |
CUDA | + | 8.6 |
Wydajność syntetycznego benchmarku
Oto wyniki testu Quadro K1000M i RTX A2000 na temat wydajności renderowania w testach porównawczych innych niż gry. Całkowity wynik wynosi od 0 do 100, przy czym 100 odpowiada obecnie najszybszej karcie graficznej.
Łączny wynik syntetycznego testu porównawczego
To jest nasza łączna ocena wydajności benchmarku. Regularnie ulepszamy nasze algorytmy łączące, ale jeśli znajdziesz jakieś zauważalne niespójności, nie krępuj się mówić o tym w sekcji komentarzy, zazwyczaj szybko rozwiązujemy problemy.
Passmark
Jest to prawdopodobnie najbardziej wszechobecny benchmark, wchodzący w skład pakietu Passmark PerformanceTest. Daje on możliwość dokładnej oceny karty graficznej, dostarczając cztery osobne benchmarki dla Direct3D w wersjach 9, 10, 11 i 12 (ostatni z nich wykonywany jest w rozdzielczości 4K, jeśli to możliwe), oraz kilka dodatkowych testów angażujących możliwości DirectCompute.
3DMark 11 Performance GPU
3DMark 11 to przestarzały benchmark DirectX 11 stworzony przez firmę Futuremark. Wykorzystał on cztery testy bazujące na dwóch scenach, z których jedna to kilka łodzi podwodnych eksplorujących zatopiony wrak statku, a druga to opuszczona świątynia głęboko w dżungli. Wszystkie testy są obciążone wolumetrycznym oświetleniem i teselacją, i pomimo tego, że zostały wykonane w rozdzielczości 1280x720, są stosunkowo wymagające. Zaprzestany w styczniu 2020 roku, 3DMark 11 został zastąpiony przez Time Spy.
3DMark Vantage Performance
3DMark Vantage jest przestarzałym benchmarkiem DirectX 10. Poddaje on kartę graficzną działaniu dwóch scen, z których jedna przedstawia dziewczynę uciekającą z jakiejś zmilitaryzowanej bazy znajdującej się w morskiej jaskini, a druga flotę kosmiczną atakującą bezbronną planetę. Został on wycofany z użycia w kwietniu 2017 roku, a zamiast niego zaleca się obecnie stosowanie benchmarka Time Spy.
GeekBench 5 OpenCL
Geekbench 5 to szeroko rozpowszechniony test porównawczy kart graficznych połączony z 11 różnymi scenariuszami testowymi. Wszystkie te scenariusze opierają się na bezpośrednim wykorzystaniu mocy obliczeniowej GPU, bez renderowania 3D. Ta odmiana wykorzystuje OpenCL API firmy Khronos Group.
GeekBench 5 Vulkan
Geekbench 5 to szeroko rozpowszechniony test porównawczy kart graficznych połączony z 11 różnymi scenariuszami testowymi. Wszystkie te scenariusze opierają się na bezpośrednim wykorzystaniu mocy obliczeniowej GPU, bez renderowania 3D. Ta odmiana wykorzystuje Vulkan API firmy AMD & Khronos Group.
GeekBench 5 CUDA
Geekbench 5 to szeroko rozpowszechniony test porównawczy kart graficznych połączony z 11 różnymi scenariuszami testowymi. Wszystkie te scenariusze opierają się na bezpośrednim wykorzystaniu mocy obliczeniowej GPU, bez renderowania 3D. Ta odmiana wykorzystuje CUDA API firmy NVIDIA.
Wydajność w grach
Wyniki Quadro K1000M i RTX A2000 w grach, wartości są mierzone w FPS.
Średnia liczba klatek na sekundę we wszystkich grach na PC
Oto średnie klatki na sekundę w dużym zestawie popularnych gier w różnych rozdzielczościach:
900p | 9
−1567%
| 150−160
+1567%
|
Full HD | 16
−500%
| 96
+500%
|
1440p | 2−3
−2200%
| 46
+2200%
|
4K | 1−2
−2800%
| 29
+2800%
|
Wydajność FPS w popularnych grach
Full HD
Low Preset
Cyberpunk 2077 | 4−5
−1650%
|
70−75
+1650%
|
Full HD
Medium Preset
Assassin's Creed Odyssey | 7−8
−1614%
|
120−130
+1614%
|
Battlefield 5 | 1−2
−1500%
|
16−18
+1500%
|
Call of Duty: Modern Warfare | 5−6
−1600%
|
85−90
+1600%
|
Cyberpunk 2077 | 4−5
−1650%
|
70−75
+1650%
|
Far Cry 5 | 3−4
−1567%
|
50−55
+1567%
|
Far Cry New Dawn | 5−6
−1600%
|
85−90
+1600%
|
Forza Horizon 4 | 8−9
−1650%
|
140−150
+1650%
|
Hitman 3 | 7−8
−1614%
|
120−130
+1614%
|
Horizon Zero Dawn | 18−20
−1567%
|
300−310
+1567%
|
Red Dead Redemption 2 | 4−5
−1650%
|
70−75
+1650%
|
Shadow of the Tomb Raider | 10−11
−1600%
|
170−180
+1600%
|
Watch Dogs: Legion | 35−40
−1614%
|
600−650
+1614%
|
Full HD
High Preset
Assassin's Creed Odyssey | 7−8
−1614%
|
120−130
+1614%
|
Battlefield 5 | 1−2
−1500%
|
16−18
+1500%
|
Call of Duty: Modern Warfare | 5−6
−1600%
|
85−90
+1600%
|
Cyberpunk 2077 | 4−5
−1650%
|
70−75
+1650%
|
Far Cry 5 | 3−4
−1567%
|
50−55
+1567%
|
Far Cry New Dawn | 5−6
−1600%
|
85−90
+1600%
|
Forza Horizon 4 | 8−9
−1650%
|
140−150
+1650%
|
Hitman 3 | 7−8
−1614%
|
120−130
+1614%
|
Horizon Zero Dawn | 18−20
−1567%
|
300−310
+1567%
|
Red Dead Redemption 2 | 4−5
−1650%
|
70−75
+1650%
|
Shadow of the Tomb Raider | 10−11
−1600%
|
170−180
+1600%
|
The Witcher 3: Wild Hunt | 12−14
−1650%
|
210−220
+1650%
|
Watch Dogs: Legion | 35−40
−1614%
|
600−650
+1614%
|
Full HD
Ultra Preset
Assassin's Creed Odyssey | 7−8
−1614%
|
120−130
+1614%
|
Call of Duty: Modern Warfare | 5−6
−1600%
|
85−90
+1600%
|
Cyberpunk 2077 | 4−5
−1650%
|
70−75
+1650%
|
Far Cry 5 | 3−4
−1567%
|
50−55
+1567%
|
Forza Horizon 4 | 8−9
−1650%
|
140−150
+1650%
|
Hitman 3 | 7−8
−1614%
|
120−130
+1614%
|
Horizon Zero Dawn | 18−20
−1567%
|
300−310
+1567%
|
Shadow of the Tomb Raider | 10−11
−1600%
|
170−180
+1600%
|
The Witcher 3: Wild Hunt | 12−14
−1650%
|
210−220
+1650%
|
Watch Dogs: Legion | 35−40
−1614%
|
600−650
+1614%
|
Full HD
Epic Preset
Red Dead Redemption 2 | 4−5
−1650%
|
70−75
+1650%
|
1440p
High Preset
Battlefield 5 | 3−4
−1567%
|
50−55
+1567%
|
Far Cry New Dawn | 3−4
−1567%
|
50−55
+1567%
|
1440p
Ultra Preset
Assassin's Creed Odyssey | 2−3
−1650%
|
35−40
+1650%
|
Call of Duty: Modern Warfare | 1−2
−1500%
|
16−18
+1500%
|
Cyberpunk 2077 | 1−2
−1500%
|
16−18
+1500%
|
Far Cry 5 | 2−3
−1650%
|
35−40
+1650%
|
Hitman 3 | 7−8
−1614%
|
120−130
+1614%
|
Horizon Zero Dawn | 6−7
−1567%
|
100−105
+1567%
|
The Witcher 3: Wild Hunt | 1−2
−1500%
|
16−18
+1500%
|
Watch Dogs: Legion | 10−12
−1627%
|
190−200
+1627%
|
1440p
Epic Preset
Red Dead Redemption 2 | 5−6
−1600%
|
85−90
+1600%
|
4K
High Preset
Far Cry New Dawn | 1−2
−1500%
|
16−18
+1500%
|
4K
Ultra Preset
Assassin's Creed Odyssey | 2−3
−1650%
|
35−40
+1650%
|
Assassin's Creed Valhalla | 1−2
−1500%
|
16−18
+1500%
|
Call of Duty: Modern Warfare | 0−1 | 0−1 |
Far Cry 5 | 1−2
−1500%
|
16−18
+1500%
|
Watch Dogs: Legion | 0−1 | 0−1 |
4K
Epic Preset
Red Dead Redemption 2 | 3−4
−1567%
|
50−55
+1567%
|
W ten sposób K1000M i RTX A2000 konkurują w popularnych grach:
- RTX A2000 jest 1567% szybszy w 900p
- RTX A2000 jest 500% szybszy w 1080p
- RTX A2000 jest 2200% szybszy w 1440p
- RTX A2000 jest 2800% szybszy w 4K
Podsumowanie zalet i wad
Ocena skuteczności działania | 2.02 | 35.56 |
Nowość | 1 czerwca 2012 | 10 sierpnia 2021 |
Maksymalna ilość pamięci | 2 GB | 6 GB |
Proces technologiczny | 28 nm | 8 nm |
Pobór mocy (TDP) | 45 Wat | 70 Wat |
K1000M ma 55.6% niższe zużycie energii.
Z drugiej strony, RTX A2000 ma 1660.4% wyższy zagregowany wynik wydajności, ma przewagę wiekową wynoszącą 9 lat, ma 200% wyższą maksymalną ilość pamięci VRAM, i ma 250% bardziej zaawansowany proces litografii.
Model RTX A2000 to nasz rekomendowany wybór, ponieważ w testach wydajności pokonuje on Quadro K1000M.
Należy przy tym zdawać sobie sprawę z tego, że Quadro K1000M jest przeznaczona dla mobilnych stacji roboczych, a RTX A2000 - dla stacji roboczych.
Jeśli nadal masz pytania dotyczące wyboru między Quadro K1000M i RTX A2000 - zadaj je w komentarzach, a my odpowiemy.
Porównanie z podobnymi układami GPU
Wybraliśmy kilka porównań kart graficznych o wydajności mniej lub bardziej zbliżonej do tych recenzowanych, zapewniając Ci więcej prawdopodobnych opcji do rozważenia.