RTX A3000 Mobile เทียบกับ Quadro M2200
คะแนนประสิทธิภาพรวม
เราได้เปรียบเทียบ Quadro M2200 และ RTX A3000 Mobile โดยครอบคลุมสเปกและผลการทดสอบที่เกี่ยวข้องทั้งหมด
RTX A3000 Mobile มีประสิทธิภาพดีกว่า M2200 อย่างมหาศาลถึง 194% ตามผลการทดสอบแบบรวมของเรา
รายละเอียดหลัก
สถาปัตยกรรม GPU, กลุ่มตลาด, ความคุ้มค่า และพารามิเตอร์ทั่วไปอื่นๆ ที่ถูกนำมาเปรียบเทียบ
ตำแหน่งในการจัดอันดับประสิทธิภาพ | 425 | 172 |
จัดอันดับตามความนิยม | ไม่ได้อยู่ใน 100 อันดับแรก | ไม่ได้อยู่ใน 100 อันดับแรก |
ประสิทธิภาพการใช้พลังงาน | 13.86 | 32.03 |
สถาปัตยกรรม | Maxwell 2.0 (2014−2019) | Ampere (2020−2024) |
ชื่อรหัส GPU | GM206 | GA104 |
ประเภทตลาด | เวิร์กสเตชันแบบพกพา | เวิร์กสเตชันแบบพกพา |
วันที่วางจำหน่าย | 11 มกราคม 2017 (เมื่อ 8 ปี ปีที่แล้ว) | 12 เมษายน 2021 (เมื่อ 3 ปี ปีที่แล้ว) |
สเปกโดยละเอียด
พารามิเตอร์ทั่วไป เช่น จำนวนเชดเดอร์, ความถี่พื้นฐานและความถี่บูสต์ของ GPU, กระบวนการผลิต, ความเร็วการประมวลผลและการเท็กซ์เจอร์ โปรดทราบว่าการใช้พลังงานของการ์ดจอบางรุ่นอาจเกินกว่า TDP ที่กำหนดไว้ โดยเฉพาะเมื่อทำการโอเวอร์คล็อก
พาธไลน์ / คอร์ CUDA | 1024 | 4096 |
ความเร็วสัญญาณนาฬิกาหลัก | 695 MHz | 600 MHz |
เพิ่มความเร็วสัญญาณนาฬิกา | 1036 MHz | 1230 MHz |
จำนวนทรานซิสเตอร์ | 2,940 million | 17,400 million |
เทคโนโลยีกระบวนการผลิต | 28 nm | 8 nm |
การใช้พลังงาน (TDP) | 55 Watt | 70 Watt |
อัตราการเติมเท็กซ์เจอร์ | 66.30 | 157.4 |
ประสิทธิภาพการประมวลผลจุดลอยตัว | 2.122 TFLOPS | 10.08 TFLOPS |
ROPs | 32 | 64 |
TMUs | 64 | 128 |
Tensor Cores | ไม่มีข้อมูล | 128 |
Ray Tracing Cores | ไม่มีข้อมูล | 32 |
ฟอร์มแฟกเตอร์และความเข้ากันได้
ข้อมูลเกี่ยวกับความเข้ากันได้กับอุปกรณ์คอมพิวเตอร์อื่นๆ มีประโยชน์เมื่อเลือกการกำหนดค่าคอมพิวเตอร์ในอนาคตหรืออัปเกรดคอมพิวเตอร์ที่มีอยู่ สำหรับการ์ดจอเดสก์ท็อป จะรวมถึงอินเทอร์เฟซและบัส (ความเข้ากันได้กับเมนบอร์ด) และขั้วต่อไฟเพิ่มเติม (ความเข้ากันได้กับหน่วยจ่ายไฟ)
ขนาดแล็ปท็อป | large | large |
อินเทอร์เฟซ | MXM-A (3.0) | PCIe 4.0 x16 |
ขั้วต่อพลังงานเสริม | None | None |
ความจุและประเภทของ VRAM
พารามิเตอร์ของ VRAM ที่ติดตั้ง: ประเภท, ขนาด, บัส, ความถี่ และแบนด์วิดท์ที่ได้ GPU แบบรวมไม่มี VRAM เฉพาะ และใช้ส่วนแบ่งของ RAM ระบบแทน
ประเภทหน่วยความจำ | GDDR5 | GDDR6 |
จำนวน RAM สูงสุด | 4 จีบี | 6 จีบี |
ความกว้างบัสหน่วยความจำ | 128 Bit | 192 Bit |
ความเร็วของนาฬิกาหน่วยความจำ | 1377 MHz | 1375 MHz |
88 จีบี/s | 264.0 จีบี/s | |
หน่วยความจำที่ใช้ร่วมกัน | - | - |
การเชื่อมต่อและเอาต์พุต
ประเภทและจำนวนของตัวเชื่อมต่อวิดีโอที่มีใน GPU ที่รีวิว โดยทั่วไป ข้อมูลในส่วนนี้จะแม่นยำเฉพาะสำหรับการ์ดเดสก์ท็อปแบบอ้างอิง (หรือที่เรียกว่า Founders Edition สำหรับชิป NVIDIA) ผู้ผลิต OEM อาจเปลี่ยนแปลงจำนวนและประเภทของพอร์ตเอาต์พุต ในขณะที่สำหรับการ์ดโน้ตบุ๊ก ความพร้อมใช้งานของพอร์ตวิดีโอบางประเภทขึ้นอยู่กับรุ่นของแล็ปท็อปมากกว่าตัวการ์ดเอง
ขั้วต่อจอแสดงผล | No outputs | Portable Device Dependent |
Display Port | 1.2 | ไม่มีข้อมูล |
เทคโนโลยีที่รองรับ
โซลูชันทางเทคโนโลยีที่รองรับ ข้อมูลนี้จะมีประโยชน์หากคุณต้องการเทคโนโลยีเฉพาะสำหรับการใช้งานของคุณ
Optimus | + | - |
3D Stereo | + | ไม่มีข้อมูล |
Mosaic | + | ไม่มีข้อมูล |
nView Display Management | + | ไม่มีข้อมูล |
Optimus | + | ไม่มีข้อมูล |
ความเข้ากันได้ของ API
รายการ API สำหรับการประมวลผล 3D และการประมวลผลทั่วไปที่รองรับ รวมถึงเวอร์ชันเฉพาะ
DirectX | 12 | 12 Ultimate (12_2) |
รุ่นเชดเดอร์ | 6.4 | 6.7 |
OpenGL | 4.5 | 4.6 |
OpenCL | 1.2 | 3.0 |
Vulkan | 1.1.126 | 1.3 |
CUDA | 5.2 | 8.6 |
ประสิทธิภาพการทดสอบแบบสังเคราะห์
การเปรียบเทียบผลการทดสอบที่ไม่เกี่ยวกับเกม โดยคะแนนรวมวัดบนมาตราส่วน 0-100 คะแนน
คะแนนรวมของการทดสอบแบบสังเคราะห์
นี่คือคะแนนการทดสอบแบบรวมของเรา เรากำลังปรับปรุงอัลกอริทึมรวมคะแนนอย่างต่อเนื่อง แต่หากคุณพบความไม่สอดคล้องใด ๆ สามารถแจ้งให้เราทราบในส่วนความคิดเห็นได้ เรามักจะแก้ไขปัญหาอย่างรวดเร็ว
Passmark
นี่คือการทดสอบ GPU ที่พบได้บ่อยที่สุด โดยจะประเมินการ์ดจอภายใต้ภาระงานหลากหลายประเภท โดยให้การทดสอบแยกต่างหาก 4 ครั้งสำหรับ Direct3D เวอร์ชัน 9, 10, 11 และ 12 (เวอร์ชันสุดท้ายใช้ความละเอียด 4K หากทำได้) รวมถึงการทดสอบเพิ่มเติมที่ใช้คุณสมบัติ DirectCompute
3DMark 11 Performance GPU
3DMark 11 เป็นการทดสอบ DirectX 11 เก่าโดย Futuremark ซึ่งประกอบไปด้วย 4 การทดสอบจาก 2 ฉาก: ฉากแรกแสดงการสำรวจซากเรือจมใต้น้ำโดยเรือดำน้ำหลายลำ อีกฉากหนึ่งแสดงวัดร้างลึกเข้าไปในป่าทึบ การทดสอบทั้งหมดใช้แสงวอลุ่ม (Volumetric Lighting) และ Tessellation อย่างหนัก แม้จะใช้ความละเอียด 1280x720 แต่ก็ยังค่อนข้างกินทรัพยากรฮาร์ดแวร์ ยกเลิกไปในเดือนมกราคม 2020 และถูกแทนที่โดย Time Spy
3DMark Vantage Performance
3DMark Vantage เป็นการทดสอบ DirectX 10 เก่าที่ใช้ความละเอียด 1280x1024 โดยมีฉากหลัก 2 ฉาก: ฉากแรกแสดงเด็กผู้หญิงคนหนึ่งหนีออกจากฐานทัพในถ้ำกลางทะเล และอีกฉากหนึ่งแสดงยานอวกาศบุกโจมตีดาวเคราะห์ที่ไร้การป้องกัน ยกเลิกไปในเดือนเมษายน 2017 และแนะนำให้ใช้การทดสอบ Time Spy แทน
3DMark Fire Strike Graphics
Fire Strike เป็นการทดสอบ DirectX 11 สำหรับเกมพีซี ประกอบด้วยการทดสอบ 2 ฉากที่แสดงการต่อสู้ระหว่างมนุษย์และสิ่งมีชีวิตที่ทำจากลาวา ใช้ความละเอียด 1920x1080 และสามารถแสดงกราฟิกที่สมจริง กินทรัพยากรฮาร์ดแวร์สูง
3DMark Cloud Gate GPU
Cloud Gate เป็นการทดสอบ DirectX 11 ระดับ 10 ที่ล้าสมัย ซึ่งเคยใช้สำหรับพีซีตามบ้านและแล็ปท็อปพื้นฐาน แสดงฉากการปล่อยยานอวกาศผ่านอุปกรณ์เทเลพอร์ตอวกาศประหลาด ด้วยความละเอียด 1280x720 เช่นเดียวกับ Ice Storm Benchmark ถูกยกเลิกในเดือนมกราคม 2020 และถูกแทนที่โดย 3DMark Night Raid
3DMark Time Spy Graphics
ประสิทธิภาพในการเล่นเกม
มาดูกันว่าการ์ดจอที่นำมาเปรียบเทียบเหมาะสำหรับการเล่นเกมมากน้อยแค่ไหน โดยผลการทดสอบเกมเฉพาะจะวัดเป็นเฟรมต่อวินาที (FPS)
ค่า FPS เฉลี่ยจากเกมพีซีทั้งหมด
นี่คือค่าเฉลี่ยเฟรมต่อวินาทีจากเกมยอดนิยมหลากหลายเกมในหลายความละเอียด:
Full HD | 43
−133%
| 100
+133%
|
1440p | 18−20
−200%
| 54
+200%
|
4K | 14
−236%
| 47
+236%
|
ประสิทธิภาพ FPS ในเกมยอดนิยม
Full HD
Low Preset
Counter-Strike 2 | 18−20
−237%
|
60−65
+237%
|
Cyberpunk 2077 | 21−24
−250%
|
77
+250%
|
Full HD
Medium Preset
Battlefield 5 | 35−40
−158%
|
90−95
+158%
|
Counter-Strike 2 | 18−20
−237%
|
60−65
+237%
|
Cyberpunk 2077 | 21−24
−205%
|
67
+205%
|
Forza Horizon 4 | 40−45
−273%
|
164
+273%
|
Forza Horizon 5 | 27−30
−200%
|
80−85
+200%
|
Metro Exodus | 30−33
−243%
|
103
+243%
|
Red Dead Redemption 2 | 27−30
−131%
|
65−70
+131%
|
Valorant | 40−45
−200%
|
120−130
+200%
|
Full HD
High Preset
Battlefield 5 | 35−40
−158%
|
90−95
+158%
|
Counter-Strike 2 | 18−20
−237%
|
60−65
+237%
|
Cyberpunk 2077 | 21−24
−150%
|
55
+150%
|
Dota 2 | 40−45
−225%
|
130
+225%
|
Far Cry 5 | 40−45
−93.2%
|
85
+93.2%
|
Fortnite | 60−65
−136%
|
150−160
+136%
|
Forza Horizon 4 | 40−45
−205%
|
134
+205%
|
Forza Horizon 5 | 27−30
−200%
|
80−85
+200%
|
Grand Theft Auto V | 40−45
−210%
|
124
+210%
|
Metro Exodus | 30−33
−63.3%
|
49
+63.3%
|
PLAYERUNKNOWN'S BATTLEGROUNDS | 80−85
−119%
|
180−190
+119%
|
Red Dead Redemption 2 | 27−30
−131%
|
65−70
+131%
|
The Witcher 3: Wild Hunt | 30−35
−236%
|
110−120
+236%
|
Valorant | 40−45
−200%
|
120−130
+200%
|
World of Tanks | 150−160
−77.6%
|
270−280
+77.6%
|
Full HD
Ultra Preset
Battlefield 5 | 35−40
−158%
|
90−95
+158%
|
Counter-Strike 2 | 18−20
−237%
|
60−65
+237%
|
Cyberpunk 2077 | 21−24
−109%
|
46
+109%
|
Dota 2 | 40−45
−230%
|
132
+230%
|
Far Cry 5 | 40−45
−102%
|
85−90
+102%
|
Forza Horizon 4 | 40−45
−159%
|
114
+159%
|
Forza Horizon 5 | 27−30
−200%
|
80−85
+200%
|
PLAYERUNKNOWN'S BATTLEGROUNDS | 80−85
−119%
|
180−190
+119%
|
Valorant | 40−45
−200%
|
120−130
+200%
|
1440p
High Preset
Dota 2 | 14−16
−313%
|
62
+313%
|
Grand Theft Auto V | 14−16
−313%
|
62
+313%
|
PLAYERUNKNOWN'S BATTLEGROUNDS | 50−55
−230%
|
170−180
+230%
|
Red Dead Redemption 2 | 9−10
−244%
|
30−35
+244%
|
World of Tanks | 75−80
−165%
|
200−210
+165%
|
1440p
Ultra Preset
Battlefield 5 | 21−24
−186%
|
60−65
+186%
|
Counter-Strike 2 | 30−35
+0%
|
30−35
+0%
|
Cyberpunk 2077 | 8−9
−250%
|
28
+250%
|
Far Cry 5 | 24−27
−308%
|
100−110
+308%
|
Forza Horizon 4 | 24−27
−231%
|
86
+231%
|
Forza Horizon 5 | 16−18
−212%
|
50−55
+212%
|
Metro Exodus | 21−24
−232%
|
70−75
+232%
|
The Witcher 3: Wild Hunt | 14−16
−253%
|
50−55
+253%
|
Valorant | 27−30
−252%
|
95−100
+252%
|
4K
High Preset
Counter-Strike 2 | 6−7
−433%
|
30−35
+433%
|
Dota 2 | 21−24
−133%
|
49
+133%
|
Grand Theft Auto V | 21−24
−133%
|
49
+133%
|
Metro Exodus | 6−7
−333%
|
24−27
+333%
|
PLAYERUNKNOWN'S BATTLEGROUNDS | 30−35
−219%
|
100−110
+219%
|
Red Dead Redemption 2 | 7−8
−200%
|
21−24
+200%
|
The Witcher 3: Wild Hunt | 21−24
−133%
|
49
+133%
|
4K
Ultra Preset
Battlefield 5 | 10−11
−260%
|
35−40
+260%
|
Counter-Strike 2 | 6−7
−433%
|
30−35
+433%
|
Cyberpunk 2077 | 3−4
−133%
|
7
+133%
|
Dota 2 | 21−24
−267%
|
77
+267%
|
Far Cry 5 | 14−16
−221%
|
45−50
+221%
|
Fortnite | 12−14
−258%
|
40−45
+258%
|
Forza Horizon 4 | 14−16
−240%
|
51
+240%
|
Forza Horizon 5 | 8−9
−263%
|
27−30
+263%
|
Valorant | 10−12
−336%
|
45−50
+336%
|
นี่คือวิธีที่ Quadro M2200 และ RTX A3000 Mobile แข่งขันกันในเกมยอดนิยม:
- RTX A3000 Mobile เร็วกว่า 133% ในความละเอียด 1080p
- RTX A3000 Mobile เร็วกว่า 200% ในความละเอียด 1440p
- RTX A3000 Mobile เร็วกว่า 236% ในความละเอียด 4K
นี่คือช่วงความแตกต่างของประสิทธิภาพที่สังเกตได้จากเกมยอดนิยม:
- ในเกม Counter-Strike 2 ด้วยความละเอียด 4K และการตั้งค่า High Preset อุปกรณ์ RTX A3000 Mobile เร็วกว่า 433%
โดยรวมแล้ว ในเกมยอดนิยม:
- RTX A3000 Mobile เหนือกว่าใน 63การทดสอบ (98%)
- เสมอกันใน 1การทดสอบ (2%)
สรุปข้อดีและข้อเสีย
คะแนนประสิทธิภาพ | 11.05 | 32.51 |
ความใหม่ล่าสุด | 11 มกราคม 2017 | 12 เมษายน 2021 |
จำนวน RAM สูงสุด | 4 จีบี | 6 จีบี |
การผลิตชิปด้วยลิทอกราฟี | 28 nm | 8 nm |
การใช้พลังงาน (TDP) | 55 วัตต์ | 70 วัตต์ |
Quadro M2200 มีข้อได้เปรียบ ใช้พลังงานน้อยกว่าถึง 27.3%
ในทางกลับกัน RTX A3000 Mobile มีข้อได้เปรียบ มีคะแนนประสิทธิภาพรวมสูงกว่าถึง 194.2% และได้เปรียบด้านอายุการเปิดตัวอยู่ที่ 4 ปี และและมีกระบวนการลิทอกราฟีที่ก้าวหน้ากว่าถึง 250%
RTX A3000 Mobile เป็นตัวเลือกที่เราแนะนำ เนื่องจากมีประสิทธิภาพเหนือกว่า Quadro M2200 ในการทดสอบประสิทธิภาพ
หากคุณยังมีคำถามเกี่ยวกับการเลือก GPU ที่รีวิวไว้ สามารถถามได้ในส่วนความคิดเห็น แล้วเราจะตอบกลับ