Quadro P620 เทียบกับ Quadro K1000M
คะแนนประสิทธิภาพรวม
เราได้เปรียบเทียบ Quadro K1000M กับ Quadro P620 รวมถึงสเปกและข้อมูลประสิทธิภาพ
P620 มีประสิทธิภาพดีกว่า K1000M อย่างมหาศาลถึง 372% ตามผลการทดสอบแบบรวมของเรา
รายละเอียดหลัก
สถาปัตยกรรม GPU, กลุ่มตลาด, ความคุ้มค่า และพารามิเตอร์ทั่วไปอื่นๆ ที่ถูกนำมาเปรียบเทียบ
ตำแหน่งในการจัดอันดับประสิทธิภาพ | 899 | 474 |
จัดอันดับตามความนิยม | ไม่ได้อยู่ใน 100 อันดับแรก | ไม่ได้อยู่ใน 100 อันดับแรก |
ความคุ้มค่าเมื่อเทียบกับราคา | 0.51 | ไม่มีข้อมูล |
ประสิทธิภาพการใช้พลังงาน | 3.08 | 16.38 |
สถาปัตยกรรม | Kepler (2012−2018) | Pascal (2016−2021) |
ชื่อรหัส GPU | GK107 | GP107 |
ประเภทตลาด | เวิร์กสเตชันแบบพกพา | เวิร์กสเตชัน |
วันที่วางจำหน่าย | 1 มิถุนายน 2012 (เมื่อ 12 ปี ปีที่แล้ว) | 1 กุมภาพันธ์ 2018 (เมื่อ 7 ปี ปีที่แล้ว) |
ราคาเปิดตัว (MSRP) | $119.90 | ไม่มีข้อมูล |
ความคุ้มค่าเมื่อเทียบกับราคา
อัตราส่วนประสิทธิภาพต่อราคา ยิ่งสูงยิ่งดี
สเปกโดยละเอียด
พารามิเตอร์ทั่วไป เช่น จำนวนเชดเดอร์, ความถี่พื้นฐานและความถี่บูสต์ของ GPU, กระบวนการผลิต, ความเร็วการประมวลผลและการเท็กซ์เจอร์ โปรดทราบว่าการใช้พลังงานของการ์ดจอบางรุ่นอาจเกินกว่า TDP ที่กำหนดไว้ โดยเฉพาะเมื่อทำการโอเวอร์คล็อก
พาธไลน์ / คอร์ CUDA | 192 | 512 |
ความเร็วสัญญาณนาฬิกาหลัก | 850 MHz | 1177 MHz |
เพิ่มความเร็วสัญญาณนาฬิกา | ไม่มีข้อมูล | 1443 MHz |
จำนวนทรานซิสเตอร์ | 1,270 million | 3,300 million |
เทคโนโลยีกระบวนการผลิต | 28 nm | 14 nm |
การใช้พลังงาน (TDP) | 45 Watt | 40 Watt |
อัตราการเติมเท็กซ์เจอร์ | 13.60 | 46.18 |
ประสิทธิภาพการประมวลผลจุดลอยตัว | 0.3264 TFLOPS | 1.478 TFLOPS |
ROPs | 16 | 16 |
TMUs | 16 | 32 |
ฟอร์มแฟกเตอร์และความเข้ากันได้
ข้อมูลเกี่ยวกับความเข้ากันได้กับอุปกรณ์คอมพิวเตอร์อื่นๆ มีประโยชน์เมื่อเลือกการกำหนดค่าคอมพิวเตอร์ในอนาคตหรืออัปเกรดคอมพิวเตอร์ที่มีอยู่ สำหรับการ์ดจอเดสก์ท็อป จะรวมถึงอินเทอร์เฟซและบัส (ความเข้ากันได้กับเมนบอร์ด) และขั้วต่อไฟเพิ่มเติม (ความเข้ากันได้กับหน่วยจ่ายไฟ)
ขนาดแล็ปท็อป | medium sized | ไม่มีข้อมูล |
อินเทอร์เฟซ | MXM-A (3.0) | PCIe 3.0 x16 |
ความยาว | ไม่มีข้อมูล | 145 mm |
ความกว้าง | ไม่มีข้อมูล | IGP |
ขั้วต่อพลังงานเสริม | ไม่มีข้อมูล | None |
ความจุและประเภทของ VRAM
พารามิเตอร์ของ VRAM ที่ติดตั้ง: ประเภท, ขนาด, บัส, ความถี่ และแบนด์วิดท์ที่ได้ GPU แบบรวมไม่มี VRAM เฉพาะ และใช้ส่วนแบ่งของ RAM ระบบแทน
ประเภทหน่วยความจำ | DDR3 | GDDR5 |
จำนวน RAM สูงสุด | 2 จีบี | 2 จีบี |
ความกว้างบัสหน่วยความจำ | 128 Bit | 128 Bit |
ความเร็วของนาฬิกาหน่วยความจำ | 900 MHz | 1502 MHz |
28.8 จีบี/s | 96.13 จีบี/s | |
หน่วยความจำที่ใช้ร่วมกัน | - | - |
การเชื่อมต่อและเอาต์พุต
ประเภทและจำนวนของตัวเชื่อมต่อวิดีโอที่มีใน GPU ที่รีวิว โดยทั่วไป ข้อมูลในส่วนนี้จะแม่นยำเฉพาะสำหรับการ์ดเดสก์ท็อปแบบอ้างอิง (หรือที่เรียกว่า Founders Edition สำหรับชิป NVIDIA) ผู้ผลิต OEM อาจเปลี่ยนแปลงจำนวนและประเภทของพอร์ตเอาต์พุต ในขณะที่สำหรับการ์ดโน้ตบุ๊ก ความพร้อมใช้งานของพอร์ตวิดีโอบางประเภทขึ้นอยู่กับรุ่นของแล็ปท็อปมากกว่าตัวการ์ดเอง
ขั้วต่อจอแสดงผล | No outputs | No outputs |
เทคโนโลยีที่รองรับ
โซลูชันทางเทคโนโลยีที่รองรับ ข้อมูลนี้จะมีประโยชน์หากคุณต้องการเทคโนโลยีเฉพาะสำหรับการใช้งานของคุณ
Optimus | + | - |
ความเข้ากันได้ของ API และ SDK
รายการ API สำหรับการประมวลผล 3D และการประมวลผลทั่วไปที่รองรับ รวมถึงเวอร์ชันเฉพาะ
DirectX | 12 (11_0) | 12 (12_1) |
รุ่นเชดเดอร์ | 5.1 | 6.4 |
OpenGL | 4.6 | 4.6 |
OpenCL | 1.2 | 1.2 |
Vulkan | + | 1.2.131 |
CUDA | + | 6.1 |
ประสิทธิภาพการทดสอบแบบสังเคราะห์
การเปรียบเทียบผลการทดสอบที่ไม่เกี่ยวกับเกม โดยคะแนนรวมวัดบนมาตราส่วน 0-100 คะแนน
คะแนนรวมของการทดสอบแบบสังเคราะห์
นี่คือคะแนนการทดสอบแบบรวมของเรา
Passmark
นี่คือการทดสอบ GPU ที่พบได้บ่อยที่สุด โดยจะประเมินการ์ดจอภายใต้ภาระงานหลากหลายประเภท โดยให้การทดสอบแยกต่างหาก 4 ครั้งสำหรับ Direct3D เวอร์ชัน 9, 10, 11 และ 12 (เวอร์ชันสุดท้ายใช้ความละเอียด 4K หากทำได้) รวมถึงการทดสอบเพิ่มเติมที่ใช้คุณสมบัติ DirectCompute
3DMark 11 Performance GPU
3DMark 11 เป็นการทดสอบ DirectX 11 เก่าโดย Futuremark ซึ่งประกอบไปด้วย 4 การทดสอบจาก 2 ฉาก: ฉากแรกแสดงการสำรวจซากเรือจมใต้น้ำโดยเรือดำน้ำหลายลำ อีกฉากหนึ่งแสดงวัดร้างลึกเข้าไปในป่าทึบ การทดสอบทั้งหมดใช้แสงวอลุ่ม (Volumetric Lighting) และ Tessellation อย่างหนัก แม้จะใช้ความละเอียด 1280x720 แต่ก็ยังค่อนข้างกินทรัพยากรฮาร์ดแวร์ ยกเลิกไปในเดือนมกราคม 2020 และถูกแทนที่โดย Time Spy
3DMark Vantage Performance
3DMark Vantage เป็นการทดสอบ DirectX 10 เก่าที่ใช้ความละเอียด 1280x1024 โดยมีฉากหลัก 2 ฉาก: ฉากแรกแสดงเด็กผู้หญิงคนหนึ่งหนีออกจากฐานทัพในถ้ำกลางทะเล และอีกฉากหนึ่งแสดงยานอวกาศบุกโจมตีดาวเคราะห์ที่ไร้การป้องกัน ยกเลิกไปในเดือนเมษายน 2017 และแนะนำให้ใช้การทดสอบ Time Spy แทน
GeekBench 5 OpenCL
Geekbench 5 เป็นการทดสอบกราฟิกการ์ดที่แพร่หลาย ประกอบไปด้วยสถานการณ์การทดสอบทั้งหมด 11 รูปแบบ แต่ละรูปแบบอาศัยการประมวลผลของ GPU โดยตรง โดยไม่มีการเรนเดอร์ 3 มิติ การทดสอบนี้ใช้ OpenCL API โดย Khronos Group
GeekBench 5 Vulkan
Geekbench 5 เป็นการทดสอบกราฟิกการ์ดที่แพร่หลาย ประกอบไปด้วยสถานการณ์การทดสอบทั้งหมด 11 รูปแบบ แต่ละรูปแบบอาศัยการประมวลผลของ GPU โดยตรง โดยไม่มีการเรนเดอร์ 3 มิติ การทดสอบนี้ใช้ Vulkan API โดย AMD & Khronos Group
GeekBench 5 CUDA
Geekbench 5 เป็นการทดสอบกราฟิกการ์ดที่แพร่หลาย ประกอบไปด้วยสถานการณ์การทดสอบทั้งหมด 11 รูปแบบ แต่ละรูปแบบอาศัยการประมวลผลของ GPU โดยตรง โดยไม่มีการเรนเดอร์ 3 มิติ การทดสอบนี้ใช้ CUDA API โดย NVIDIA
ประสิทธิภาพในการเล่นเกม
มาดูกันว่าการ์ดจอที่นำมาเปรียบเทียบเหมาะสำหรับการเล่นเกมมากน้อยแค่ไหน โดยผลการทดสอบเกมเฉพาะจะวัดเป็นเฟรมต่อวินาที (FPS)
ค่า FPS เฉลี่ยจากเกมพีซีทั้งหมด
นี่คือค่าเฉลี่ยเฟรมต่อวินาทีจากเกมยอดนิยมหลากหลายเกมในหลายความละเอียด:
900p | 9
−344%
| 40−45
+344%
|
Full HD | 18
−161%
| 47
+161%
|
ต้นทุนต่อเฟรม, $
1080p | 6.66 | ไม่มีข้อมูล |
ประสิทธิภาพ FPS ในเกมยอดนิยม
Full HD
Low Preset
Atomic Heart | 5−6
−340%
|
21−24
+340%
|
Counter-Strike 2 | 8−9
−113%
|
16−18
+113%
|
Cyberpunk 2077 | 4−5
−350%
|
18−20
+350%
|
Full HD
Medium Preset
Atomic Heart | 5−6
−340%
|
21−24
+340%
|
Battlefield 5 | 5−6
−680%
|
35−40
+680%
|
Counter-Strike 2 | 8−9
−113%
|
16−18
+113%
|
Cyberpunk 2077 | 4−5
−350%
|
18−20
+350%
|
Far Cry 5 | 2−3
−1350%
|
27−30
+1350%
|
Fortnite | 8−9
−1313%
|
113
+1313%
|
Forza Horizon 4 | 10−11
−290%
|
35−40
+290%
|
Forza Horizon 5 | 2−3
−1050%
|
21−24
+1050%
|
PLAYERUNKNOWN'S BATTLEGROUNDS | 10−12
−191%
|
30−35
+191%
|
Valorant | 35−40
−123%
|
85−90
+123%
|
Full HD
High Preset
Atomic Heart | 5−6
−340%
|
21−24
+340%
|
Battlefield 5 | 5−6
−680%
|
35−40
+680%
|
Counter-Strike 2 | 8−9
−113%
|
16−18
+113%
|
Counter-Strike: Global Offensive | 35−40
−251%
|
130−140
+251%
|
Cyberpunk 2077 | 4−5
−350%
|
18−20
+350%
|
Dota 2 | 21−24
−329%
|
90
+329%
|
Far Cry 5 | 2−3
−1350%
|
27−30
+1350%
|
Fortnite | 8−9
−425%
|
42
+425%
|
Forza Horizon 4 | 10−11
−290%
|
35−40
+290%
|
Forza Horizon 5 | 2−3
−1050%
|
21−24
+1050%
|
Grand Theft Auto V | 4−5
−750%
|
30−35
+750%
|
Metro Exodus | 3−4
−467%
|
17
+467%
|
PLAYERUNKNOWN'S BATTLEGROUNDS | 10−12
−191%
|
30−35
+191%
|
The Witcher 3: Wild Hunt | 7−8
−357%
|
32
+357%
|
Valorant | 35−40
−123%
|
85−90
+123%
|
Full HD
Ultra Preset
Battlefield 5 | 5−6
−680%
|
35−40
+680%
|
Counter-Strike 2 | 8−9
−113%
|
16−18
+113%
|
Cyberpunk 2077 | 4−5
−350%
|
18−20
+350%
|
Dota 2 | 21−24
−295%
|
83
+295%
|
Far Cry 5 | 2−3
−1350%
|
27−30
+1350%
|
Forza Horizon 4 | 10−11
−290%
|
35−40
+290%
|
Forza Horizon 5 | 2−3
−1050%
|
21−24
+1050%
|
PLAYERUNKNOWN'S BATTLEGROUNDS | 10−12
−191%
|
30−35
+191%
|
The Witcher 3: Wild Hunt | 7−8
−143%
|
17
+143%
|
Valorant | 35−40
−123%
|
85−90
+123%
|
Full HD
Epic Preset
Fortnite | 8−9
−263%
|
29
+263%
|
1440p
High Preset
Counter-Strike 2 | 2−3
−500%
|
12−14
+500%
|
Counter-Strike: Global Offensive | 12−14
−423%
|
65−70
+423%
|
Grand Theft Auto V | 0−1 | 12−14 |
PLAYERUNKNOWN'S BATTLEGROUNDS | 12−14
−246%
|
45−50
+246%
|
Valorant | 14−16
−614%
|
100−105
+614%
|
1440p
Ultra Preset
Cyberpunk 2077 | 1−2
−600%
|
7−8
+600%
|
Far Cry 5 | 3−4
−533%
|
18−20
+533%
|
Forza Horizon 4 | 4−5
−425%
|
21−24
+425%
|
Forza Horizon 5 | 1−2
−1400%
|
14−16
+1400%
|
The Witcher 3: Wild Hunt | 3−4
−367%
|
14−16
+367%
|
1440p
Epic Preset
Fortnite | 3−4
−500%
|
18−20
+500%
|
4K
High Preset
Atomic Heart | 2−3
−250%
|
7−8
+250%
|
Grand Theft Auto V | 14−16
−33.3%
|
20−22
+33.3%
|
Valorant | 10−11
−360%
|
45−50
+360%
|
4K
Ultra Preset
Cyberpunk 2077 | 0−1 | 3−4 |
Dota 2 | 4−5
−725%
|
30−35
+725%
|
Far Cry 5 | 2−3
−350%
|
9−10
+350%
|
PLAYERUNKNOWN'S BATTLEGROUNDS | 3−4
−167%
|
8−9
+167%
|
4K
Epic Preset
Fortnite | 3−4
−167%
|
8−9
+167%
|
1440p
High Preset
Metro Exodus | 10−11
+0%
|
10−11
+0%
|
1440p
Ultra Preset
Battlefield 5 | 21−24
+0%
|
21−24
+0%
|
4K
High Preset
Counter-Strike 2 | 3−4
+0%
|
3−4
+0%
|
Metro Exodus | 4−5
+0%
|
4−5
+0%
|
The Witcher 3: Wild Hunt | 9−10
+0%
|
9−10
+0%
|
4K
Ultra Preset
Battlefield 5 | 10−11
+0%
|
10−11
+0%
|
Counter-Strike 2 | 3−4
+0%
|
3−4
+0%
|
Forza Horizon 4 | 14−16
+0%
|
14−16
+0%
|
Forza Horizon 5 | 6−7
+0%
|
6−7
+0%
|
นี่คือวิธีที่ K1000M และ Quadro P620 แข่งขันกันในเกมยอดนิยม:
- Quadro P620 เร็วกว่า 344% ในความละเอียด 900p
- Quadro P620 เร็วกว่า 161% ในความละเอียด 1080p
นี่คือช่วงความแตกต่างของประสิทธิภาพที่สังเกตได้จากเกมยอดนิยม:
- ในเกม Forza Horizon 5 ด้วยความละเอียด 1440p และการตั้งค่า Ultra Preset อุปกรณ์ Quadro P620 เร็วกว่า 1400%
โดยรวมแล้ว ในเกมยอดนิยม:
- Quadro P620 เหนือกว่าใน 56การทดสอบ (86%)
- เสมอกันใน 9การทดสอบ (14%)
สรุปข้อดีและข้อเสีย
คะแนนประสิทธิภาพ | 1.99 | 9.40 |
ความใหม่ล่าสุด | 1 มิถุนายน 2012 | 1 กุมภาพันธ์ 2018 |
การผลิตชิปด้วยลิทอกราฟี | 28 nm | 14 nm |
การใช้พลังงาน (TDP) | 45 วัตต์ | 40 วัตต์ |
Quadro P620 มีข้อได้เปรียบ มีคะแนนประสิทธิภาพรวมสูงกว่าถึง 372.4% และได้เปรียบด้านอายุการเปิดตัวอยู่ที่ 5 ปี และมีกระบวนการลิทอกราฟีที่ก้าวหน้ากว่าถึง 100%และใช้พลังงานน้อยกว่าถึง 12.5%
Quadro P620 เป็นตัวเลือกที่เราแนะนำ เนื่องจากมีประสิทธิภาพเหนือกว่า Quadro K1000M ในการทดสอบประสิทธิภาพ
โปรดทราบว่า Quadro K1000M เป็นการ์ดจอเวิร์กสเตชันแบบพกพา ในขณะที่ Quadro P620 เป็นการ์ดจอเวิร์กสเตชัน