GeForce RTX 4080 SUPER เทียบกับ Quadro P600
คะแนนประสิทธิภาพรวม
เราได้เปรียบเทียบ Quadro P600 กับ GeForce RTX 4080 SUPER รวมถึงสเปกและข้อมูลประสิทธิภาพ
RTX 4080 SUPER มีประสิทธิภาพดีกว่า P600 อย่างมหาศาลถึง 935% ตามผลการทดสอบแบบรวมของเรา
รายละเอียดหลัก
สถาปัตยกรรม GPU, กลุ่มตลาด, ความคุ้มค่า และพารามิเตอร์ทั่วไปอื่นๆ ที่ถูกนำมาเปรียบเทียบ
ตำแหน่งในการจัดอันดับประสิทธิภาพ | 507 | 6 |
จัดอันดับตามความนิยม | ไม่ได้อยู่ใน 100 อันดับแรก | 72 |
ความคุ้มค่าเมื่อเทียบกับราคา | 6.55 | 38.49 |
ประสิทธิภาพการใช้พลังงาน | 14.83 | 19.18 |
สถาปัตยกรรม | Pascal (2016−2021) | Ada Lovelace (2022−2024) |
ชื่อรหัส GPU | GP107 | AD103 |
ประเภทตลาด | เวิร์กสเตชัน | เดสก์ท็อป |
วันที่วางจำหน่าย | 7 กุมภาพันธ์ 2017 (เมื่อ 8 ปี ปีที่แล้ว) | 8 มกราคม 2024 (เมื่อ 1 ปี ปีที่แล้ว) |
ราคาเปิดตัว (MSRP) | $178 | $999 |
ความคุ้มค่าเมื่อเทียบกับราคา
อัตราส่วนประสิทธิภาพต่อราคา ยิ่งสูงยิ่งดี
RTX 4080 SUPER มีความคุ้มค่ามากกว่า Quadro P600 อยู่ 488%
สเปกโดยละเอียด
พารามิเตอร์ทั่วไป เช่น จำนวนเชดเดอร์, ความถี่พื้นฐานและความถี่บูสต์ของ GPU, กระบวนการผลิต, ความเร็วการประมวลผลและการเท็กซ์เจอร์ โปรดทราบว่าการใช้พลังงานของการ์ดจอบางรุ่นอาจเกินกว่า TDP ที่กำหนดไว้ โดยเฉพาะเมื่อทำการโอเวอร์คล็อก
พาธไลน์ / คอร์ CUDA | 384 | 10240 |
ความเร็วสัญญาณนาฬิกาหลัก | 1430 MHz | 2295 MHz |
เพิ่มความเร็วสัญญาณนาฬิกา | 1620 MHz | 2550 MHz |
จำนวนทรานซิสเตอร์ | 3,300 million | 45,900 million |
เทคโนโลยีกระบวนการผลิต | 14 nm | 5 nm |
การใช้พลังงาน (TDP) | 40 Watt | 320 Watt |
อัตราการเติมเท็กซ์เจอร์ | 38.88 | 816.0 |
ประสิทธิภาพการประมวลผลจุดลอยตัว | 1.244 TFLOPS | 52.22 TFLOPS |
ROPs | 16 | 112 |
TMUs | 24 | 320 |
Tensor Cores | ไม่มีข้อมูล | 320 |
Ray Tracing Cores | ไม่มีข้อมูล | 80 |
ฟอร์มแฟกเตอร์และความเข้ากันได้
ข้อมูลเกี่ยวกับความเข้ากันได้กับอุปกรณ์คอมพิวเตอร์อื่นๆ มีประโยชน์เมื่อเลือกการกำหนดค่าคอมพิวเตอร์ในอนาคตหรืออัปเกรดคอมพิวเตอร์ที่มีอยู่ สำหรับการ์ดจอเดสก์ท็อป จะรวมถึงอินเทอร์เฟซและบัส (ความเข้ากันได้กับเมนบอร์ด) และขั้วต่อไฟเพิ่มเติม (ความเข้ากันได้กับหน่วยจ่ายไฟ)
อินเทอร์เฟซ | PCIe 3.0 x16 | PCIe 4.0 x16 |
ความยาว | 145 mm | 310 mm |
ความกว้าง | 1-slot | 3-slot |
ขั้วต่อพลังงานเสริม | None | 1x 16-pin |
ความจุและประเภทของ VRAM
พารามิเตอร์ของ VRAM ที่ติดตั้ง: ประเภท, ขนาด, บัส, ความถี่ และแบนด์วิดท์ที่ได้ GPU แบบรวมไม่มี VRAM เฉพาะ และใช้ส่วนแบ่งของ RAM ระบบแทน
ประเภทหน่วยความจำ | GDDR5 | GDDR6X |
จำนวน RAM สูงสุด | 4 จีบี | 16 จีบี |
ความกว้างบัสหน่วยความจำ | 128 Bit | 256 Bit |
ความเร็วของนาฬิกาหน่วยความจำ | 1252 MHz | 1438 MHz |
80.13 จีบี/s | 736.3 จีบี/s | |
หน่วยความจำที่ใช้ร่วมกัน | - | - |
การเชื่อมต่อและเอาต์พุต
ประเภทและจำนวนของตัวเชื่อมต่อวิดีโอที่มีใน GPU ที่รีวิว โดยทั่วไป ข้อมูลในส่วนนี้จะแม่นยำเฉพาะสำหรับการ์ดเดสก์ท็อปแบบอ้างอิง (หรือที่เรียกว่า Founders Edition สำหรับชิป NVIDIA) ผู้ผลิต OEM อาจเปลี่ยนแปลงจำนวนและประเภทของพอร์ตเอาต์พุต ในขณะที่สำหรับการ์ดโน้ตบุ๊ก ความพร้อมใช้งานของพอร์ตวิดีโอบางประเภทขึ้นอยู่กับรุ่นของแล็ปท็อปมากกว่าตัวการ์ดเอง
ขั้วต่อจอแสดงผล | Portable Device Dependent | 1x HDMI 2.1, 3x DisplayPort 1.4a |
HDMI | - | + |
ความเข้ากันได้ของ API และ SDK
รายการ API สำหรับการประมวลผล 3D และการประมวลผลทั่วไปที่รองรับ รวมถึงเวอร์ชันเฉพาะ
DirectX | 12 (12_1) | 12 Ultimate (12_2) |
รุ่นเชดเดอร์ | 6.7 | 6.8 |
OpenGL | 4.6 | 4.6 |
OpenCL | 3.0 | 3.0 |
Vulkan | 1.3 | 1.3 |
CUDA | 6.1 | 8.9 |
DLSS | - | + |
ประสิทธิภาพการทดสอบแบบสังเคราะห์
การเปรียบเทียบผลการทดสอบที่ไม่เกี่ยวกับเกม โดยคะแนนรวมวัดบนมาตราส่วน 0-100 คะแนน
คะแนนรวมของการทดสอบแบบสังเคราะห์
นี่คือคะแนนการทดสอบแบบรวมของเรา
Passmark
นี่คือการทดสอบ GPU ที่พบได้บ่อยที่สุด โดยจะประเมินการ์ดจอภายใต้ภาระงานหลากหลายประเภท โดยให้การทดสอบแยกต่างหาก 4 ครั้งสำหรับ Direct3D เวอร์ชัน 9, 10, 11 และ 12 (เวอร์ชันสุดท้ายใช้ความละเอียด 4K หากทำได้) รวมถึงการทดสอบเพิ่มเติมที่ใช้คุณสมบัติ DirectCompute
3DMark 11 Performance GPU
3DMark 11 เป็นการทดสอบ DirectX 11 เก่าโดย Futuremark ซึ่งประกอบไปด้วย 4 การทดสอบจาก 2 ฉาก: ฉากแรกแสดงการสำรวจซากเรือจมใต้น้ำโดยเรือดำน้ำหลายลำ อีกฉากหนึ่งแสดงวัดร้างลึกเข้าไปในป่าทึบ การทดสอบทั้งหมดใช้แสงวอลุ่ม (Volumetric Lighting) และ Tessellation อย่างหนัก แม้จะใช้ความละเอียด 1280x720 แต่ก็ยังค่อนข้างกินทรัพยากรฮาร์ดแวร์ ยกเลิกไปในเดือนมกราคม 2020 และถูกแทนที่โดย Time Spy
3DMark Fire Strike Graphics
Fire Strike เป็นการทดสอบ DirectX 11 สำหรับเกมพีซี ประกอบด้วยการทดสอบ 2 ฉากที่แสดงการต่อสู้ระหว่างมนุษย์และสิ่งมีชีวิตที่ทำจากลาวา ใช้ความละเอียด 1920x1080 และสามารถแสดงกราฟิกที่สมจริง กินทรัพยากรฮาร์ดแวร์สูง
3DMark Cloud Gate GPU
Cloud Gate เป็นการทดสอบ DirectX 11 ระดับ 10 ที่ล้าสมัย ซึ่งเคยใช้สำหรับพีซีตามบ้านและแล็ปท็อปพื้นฐาน แสดงฉากการปล่อยยานอวกาศผ่านอุปกรณ์เทเลพอร์ตอวกาศประหลาด ด้วยความละเอียด 1280x720 เช่นเดียวกับ Ice Storm Benchmark ถูกยกเลิกในเดือนมกราคม 2020 และถูกแทนที่โดย 3DMark Night Raid
3DMark Ice Storm GPU
Ice Storm Graphics เป็นการทดสอบล้าสมัยในชุดการทดสอบ 3DMark ซึ่งเคยใช้วัดประสิทธิภาพของแล็ปท็อประดับเริ่มต้นและแท็บเล็ต Windows ใช้คุณสมบัติของ DirectX 11 ระดับ 9 ในการแสดงฉากต่อสู้ระหว่างยานอวกาศสองกองใกล้กับดาวเคราะห์น้ำแข็งที่ความละเอียด 1280x720 ยกเลิกไปในเดือนมกราคม 2020 และถูกแทนที่โดย 3DMark Night Raid
SPECviewperf 12 - specvp12 maya-04
SPECviewperf 12 - specvp12 sw-03
SPECviewperf 12 - specvp12 snx-02
SPECviewperf 12 - specvp12 catia-04
SPECviewperf 12 - specvp12 creo-01
SPECviewperf 12 - specvp12 energy-01
ประสิทธิภาพในการเล่นเกม
มาดูกันว่าการ์ดจอที่นำมาเปรียบเทียบเหมาะสำหรับการเล่นเกมมากน้อยแค่ไหน โดยผลการทดสอบเกมเฉพาะจะวัดเป็นเฟรมต่อวินาที (FPS)
ค่า FPS เฉลี่ยจากเกมพีซีทั้งหมด
นี่คือค่าเฉลี่ยเฟรมต่อวินาทีจากเกมยอดนิยมหลากหลายเกมในหลายความละเอียด:
Full HD | 36
−619%
| 259
+619%
|
1440p | 16−18
−1025%
| 180
+1025%
|
4K | 10−12
−1070%
| 117
+1070%
|
ต้นทุนต่อเฟรม, $
1080p | 4.94
−28.2%
| 3.86
+28.2%
|
1440p | 11.13
−100%
| 5.55
+100%
|
4K | 17.80
−108%
| 8.54
+108%
|
ประสิทธิภาพ FPS ในเกมยอดนิยม
Full HD
Low Preset
Atomic Heart | 20−22
−1400%
|
300
+1400%
|
Counter-Strike 2 | 16−18
−1438%
|
246
+1438%
|
Cyberpunk 2077 | 16−18
−1365%
|
249
+1365%
|
Full HD
Medium Preset
Atomic Heart | 20−22
−1300%
|
280
+1300%
|
Battlefield 5 | 35−40
−463%
|
190−200
+463%
|
Counter-Strike 2 | 16−18
−1400%
|
240
+1400%
|
Cyberpunk 2077 | 16−18
−1347%
|
246
+1347%
|
Far Cry 5 | 24−27
−823%
|
240
+823%
|
Fortnite | 45−50
−516%
|
300−350
+516%
|
Forza Horizon 4 | 35−40
−856%
|
344
+856%
|
Forza Horizon 5 | 20−22
−1440%
|
308
+1440%
|
PLAYERUNKNOWN'S BATTLEGROUNDS | 27−30
−510%
|
170−180
+510%
|
Valorant | 80−85
−561%
|
500−550
+561%
|
Full HD
High Preset
Atomic Heart | 20−22
−985%
|
217
+985%
|
Battlefield 5 | 35−40
−463%
|
190−200
+463%
|
Counter-Strike 2 | 16−18
−1238%
|
214
+1238%
|
Counter-Strike: Global Offensive | 120−130
−119%
|
270−280
+119%
|
Cyberpunk 2077 | 16−18
−1300%
|
238
+1300%
|
Dota 2 | 81
−888%
|
800−850
+888%
|
Far Cry 5 | 24−27
−773%
|
227
+773%
|
Fortnite | 45−50
−516%
|
300−350
+516%
|
Forza Horizon 4 | 35−40
−850%
|
342
+850%
|
Forza Horizon 5 | 20−22
−1325%
|
285
+1325%
|
Grand Theft Auto V | 30−33
−497%
|
179
+497%
|
Metro Exodus | 16−18
−1319%
|
227
+1319%
|
PLAYERUNKNOWN'S BATTLEGROUNDS | 27−30
−510%
|
170−180
+510%
|
The Witcher 3: Wild Hunt | 25
−2088%
|
547
+2088%
|
Valorant | 80−85
−561%
|
500−550
+561%
|
Full HD
Ultra Preset
Battlefield 5 | 35−40
−463%
|
190−200
+463%
|
Counter-Strike 2 | 16−18
−1088%
|
190
+1088%
|
Cyberpunk 2077 | 16−18
−1071%
|
199
+1071%
|
Dota 2 | 72
−872%
|
700−750
+872%
|
Far Cry 5 | 24−27
−715%
|
212
+715%
|
Forza Horizon 4 | 35−40
−794%
|
322
+794%
|
Forza Horizon 5 | 20−22
−900%
|
200−210
+900%
|
PLAYERUNKNOWN'S BATTLEGROUNDS | 27−30
−510%
|
170−180
+510%
|
The Witcher 3: Wild Hunt | 14
−1779%
|
263
+1779%
|
Valorant | 80−85
−561%
|
500−550
+561%
|
Full HD
Epic Preset
Fortnite | 45−50
−516%
|
300−350
+516%
|
1440p
High Preset
Counter-Strike 2 | 10−12
−1009%
|
120−130
+1009%
|
Counter-Strike: Global Offensive | 60−65
−732%
|
500−550
+732%
|
Grand Theft Auto V | 10−12
−1436%
|
169
+1436%
|
Metro Exodus | 8−9
−1925%
|
162
+1925%
|
PLAYERUNKNOWN'S BATTLEGROUNDS | 40−45
−317%
|
170−180
+317%
|
Valorant | 90−95
−433%
|
450−500
+433%
|
1440p
Ultra Preset
Battlefield 5 | 18−20
−989%
|
190−200
+989%
|
Cyberpunk 2077 | 7−8
−1729%
|
128
+1729%
|
Far Cry 5 | 16−18
−1124%
|
208
+1124%
|
Forza Horizon 4 | 18−20
−1511%
|
306
+1511%
|
Forza Horizon 5 | 14−16
−900%
|
140−150
+900%
|
The Witcher 3: Wild Hunt | 12−14
−1742%
|
221
+1742%
|
1440p
Epic Preset
Fortnite | 16−18
−788%
|
150−160
+788%
|
4K
High Preset
Atomic Heart | 7−8
−1157%
|
85−90
+1157%
|
Counter-Strike 2 | 2−3
−5750%
|
117
+5750%
|
Grand Theft Auto V | 18−20
−884%
|
187
+884%
|
Metro Exodus | 3−4
−3433%
|
106
+3433%
|
The Witcher 3: Wild Hunt | 8−9
−2450%
|
204
+2450%
|
Valorant | 40−45
−690%
|
300−350
+690%
|
4K
Ultra Preset
Battlefield 5 | 9−10
−1411%
|
130−140
+1411%
|
Counter-Strike 2 | 2−3
−1300%
|
28
+1300%
|
Cyberpunk 2077 | 3−4
−1933%
|
61
+1933%
|
Dota 2 | 27−30
−934%
|
300−310
+934%
|
Far Cry 5 | 8−9
−1713%
|
145
+1713%
|
Forza Horizon 4 | 12−14
−2246%
|
305
+2246%
|
Forza Horizon 5 | 6−7
−900%
|
60−65
+900%
|
PLAYERUNKNOWN'S BATTLEGROUNDS | 8−9
−1100%
|
95−100
+1100%
|
4K
Epic Preset
Fortnite | 8−9
−888%
|
75−80
+888%
|
นี่คือวิธีที่ Quadro P600 และ RTX 4080 SUPER แข่งขันกันในเกมยอดนิยม:
- RTX 4080 SUPER เร็วกว่า 619% ในความละเอียด 1080p
- RTX 4080 SUPER เร็วกว่า 1025% ในความละเอียด 1440p
- RTX 4080 SUPER เร็วกว่า 1070% ในความละเอียด 4K
นี่คือช่วงความแตกต่างของประสิทธิภาพที่สังเกตได้จากเกมยอดนิยม:
- ในเกม Counter-Strike 2 ด้วยความละเอียด 4K และการตั้งค่า High Preset อุปกรณ์ RTX 4080 SUPER เร็วกว่า 5750%
โดยรวมแล้ว ในเกมยอดนิยม:
- โดยไม่มีข้อยกเว้น RTX 4080 SUPER เหนือกว่า Quadro P600 ในการทดสอบทั้ง 61 ครั้งของเรา
สรุปข้อดีและข้อเสีย
คะแนนประสิทธิภาพ | 8.51 | 88.06 |
ความใหม่ล่าสุด | 7 กุมภาพันธ์ 2017 | 8 มกราคม 2024 |
จำนวน RAM สูงสุด | 4 จีบี | 16 จีบี |
การผลิตชิปด้วยลิทอกราฟี | 14 nm | 5 nm |
การใช้พลังงาน (TDP) | 40 วัตต์ | 320 วัตต์ |
Quadro P600 มีข้อได้เปรียบ ใช้พลังงานน้อยกว่าถึง 700%
ในทางกลับกัน RTX 4080 SUPER มีข้อได้เปรียบ มีคะแนนประสิทธิภาพรวมสูงกว่าถึง 934.8% และได้เปรียบด้านอายุการเปิดตัวอยู่ที่ 6 ปี และและมีกระบวนการลิทอกราฟีที่ก้าวหน้ากว่าถึง 180%
GeForce RTX 4080 SUPER เป็นตัวเลือกที่เราแนะนำ เนื่องจากมีประสิทธิภาพเหนือกว่า Quadro P600 ในการทดสอบประสิทธิภาพ
โปรดทราบว่า Quadro P600 เป็นการ์ดจอเวิร์กสเตชัน ในขณะที่ GeForce RTX 4080 SUPER เป็นการ์ดจอเดสก์ท็อป