GeForce RTX 5070 เทียบกับ Radeon R5 M320
คะแนนประสิทธิภาพรวม
เราได้เปรียบเทียบ Radeon R5 M320 กับ GeForce RTX 5070 รวมถึงสเปกและข้อมูลประสิทธิภาพ
RTX 5070 มีประสิทธิภาพดีกว่า R5 M320 อย่างมหาศาลถึง 5947% ตามผลการทดสอบแบบรวมของเรา
รายละเอียดหลัก
สถาปัตยกรรม GPU, กลุ่มตลาด, ความคุ้มค่า และพารามิเตอร์ทั่วไปอื่นๆ ที่ถูกนำมาเปรียบเทียบ
| ตำแหน่งในการจัดอันดับประสิทธิภาพ | 1113 | 22 |
| จัดอันดับตามความนิยม | ไม่ได้อยู่ใน 100 อันดับแรก | 14 |
| ความคุ้มค่าเมื่อเทียบกับราคา | ไม่มีข้อมูล | 74.07 |
| ประสิทธิภาพการใช้พลังงาน | ไม่มีข้อมูล | 21.18 |
| สถาปัตยกรรม | GCN 1.0 (2012−2020) | Blackwell 2.0 (2025−2026) |
| ชื่อรหัส GPU | Jet | GB205 |
| ประเภทตลาด | แล็ปท็อป | เดสก์ท็อป |
| วันที่วางจำหน่าย | 5 พฤษภาคม 2015 (เมื่อ 10 ปี ปีที่แล้ว) | 4 มีนาคม 2025 (ไม่เกินหนึ่งปีที่ผ่านมา) |
| ราคาเปิดตัว (MSRP) | ไม่มีข้อมูล | $549 |
ความคุ้มค่าเมื่อเทียบกับราคา
อัตราส่วนประสิทธิภาพต่อราคา ยิ่งสูงยิ่งดี
กราฟแบบกระจายประสิทธิภาพต่อราคา
สเปกโดยละเอียด
พารามิเตอร์ทั่วไป เช่น จำนวนเชดเดอร์, ความถี่พื้นฐานและความถี่บูสต์ของ GPU, กระบวนการผลิต, ความเร็วการประมวลผลและการเท็กซ์เจอร์ โปรดทราบว่าการใช้พลังงานของการ์ดจอบางรุ่นอาจเกินกว่า TDP ที่กำหนดไว้ โดยเฉพาะเมื่อทำการโอเวอร์คล็อก
| พาธไลน์ / คอร์ CUDA | 320 | 6144 |
| หน่วยประมวลผลคอมพิวต์ | 5 | ไม่มีข้อมูล |
| ความเร็วสัญญาณนาฬิกาหลัก | 780 MHz | 2325 MHz |
| เพิ่มความเร็วสัญญาณนาฬิกา | 855 MHz | 2512 MHz |
| จำนวนทรานซิสเตอร์ | 690 million | 31,100 million |
| เทคโนโลยีกระบวนการผลิต | 28 nm | 5 nm |
| การใช้พลังงาน (TDP) | unknown | 250 Watt |
| อัตราการเติมเท็กซ์เจอร์ | 17.10 | 482.3 |
| ประสิทธิภาพการประมวลผลจุดลอยตัว | 0.5472 TFLOPS | 30.87 TFLOPS |
| ROPs | 8 | 80 |
| TMUs | 20 | 192 |
| Tensor Cores | ไม่มีข้อมูล | 192 |
| Ray Tracing Cores | ไม่มีข้อมูล | 48 |
| L1 Cache | 80 เคบี | 6 เอ็มบี |
| L2 Cache | 128 เคบี | 48 เอ็มบี |
ฟอร์มแฟกเตอร์และความเข้ากันได้
ข้อมูลเกี่ยวกับความเข้ากันได้กับอุปกรณ์คอมพิวเตอร์อื่นๆ มีประโยชน์เมื่อเลือกการกำหนดค่าคอมพิวเตอร์ในอนาคตหรืออัปเกรดคอมพิวเตอร์ที่มีอยู่ สำหรับการ์ดจอเดสก์ท็อป จะรวมถึงอินเทอร์เฟซและบัส (ความเข้ากันได้กับเมนบอร์ด) และขั้วต่อไฟเพิ่มเติม (ความเข้ากันได้กับหน่วยจ่ายไฟ)
| การรองรับบัส | PCIe 3.0 | ไม่มีข้อมูล |
| อินเทอร์เฟซ | PCIe 3.0 x8 | PCIe 5.0 x16 |
| ความยาว | ไม่มีข้อมูล | 245 mm |
| ความกว้าง | ไม่มีข้อมูล | 2-slot |
| ขั้วต่อพลังงานเสริม | ไม่มีข้อมูล | 1x 16-pin |
ความจุและประเภทของ VRAM
พารามิเตอร์ของ VRAM ที่ติดตั้ง: ประเภท, ขนาด, บัส, ความถี่ และแบนด์วิดท์ที่ได้ GPU แบบรวมไม่มี VRAM เฉพาะ และใช้ส่วนแบ่งของ RAM ระบบแทน
| ประเภทหน่วยความจำ | DDR3 | GDDR7 |
| จำนวน RAM สูงสุด | 4 จีบี | 12 จีบี |
| ความกว้างบัสหน่วยความจำ | 64 Bit | 192 Bit |
| ความเร็วของนาฬิกาหน่วยความจำ | 1000 MHz | 1750 MHz |
| 16 จีบี/s | 672.0 จีบี/s | |
| หน่วยความจำที่ใช้ร่วมกัน | - | - |
| Resizable BAR | - | + |
การเชื่อมต่อและเอาต์พุต
ประเภทและจำนวนของตัวเชื่อมต่อวิดีโอที่มีใน GPU ที่รีวิว โดยทั่วไป ข้อมูลในส่วนนี้จะแม่นยำเฉพาะสำหรับการ์ดเดสก์ท็อปแบบอ้างอิง (หรือที่เรียกว่า Founders Edition สำหรับชิป NVIDIA) ผู้ผลิต OEM อาจเปลี่ยนแปลงจำนวนและประเภทของพอร์ตเอาต์พุต ในขณะที่สำหรับการ์ดโน้ตบุ๊ก ความพร้อมใช้งานของพอร์ตวิดีโอบางประเภทขึ้นอยู่กับรุ่นของแล็ปท็อปมากกว่าตัวการ์ดเอง
| ขั้วต่อจอแสดงผล | No outputs | 1x HDMI 2.1b, 3x DisplayPort 2.1b |
| HDMI | - | + |
เทคโนโลยีที่รองรับ
โซลูชันทางเทคโนโลยีที่รองรับ ข้อมูลนี้จะมีประโยชน์หากคุณต้องการเทคโนโลยีเฉพาะสำหรับการใช้งานของคุณ
| HD3D | + | - |
| PowerTune | + | - |
| DualGraphics | + | - |
| ZeroCore | + | - |
| กราฟิกแบบสลับได้ | + | - |
ความเข้ากันได้ของ API และ SDK
รายการ API สำหรับการประมวลผล 3D และการประมวลผลทั่วไปที่รองรับ รวมถึงเวอร์ชันเฉพาะ
| DirectX | DirectX® 12 | 12 Ultimate (12_2) |
| รุ่นเชดเดอร์ | 5.1 | 6.8 |
| OpenGL | 4.4 | 4.6 |
| OpenCL | Not Listed | 3.0 |
| Vulkan | + | 1.4 |
| Mantle | + | - |
| CUDA | - | 12.0 |
| DLSS | - | + |
ประสิทธิภาพการทดสอบแบบสังเคราะห์
การเปรียบเทียบผลการทดสอบที่ไม่เกี่ยวกับเกม โดยคะแนนรวมวัดบนมาตราส่วน 0-100 คะแนน
คะแนนรวมของการทดสอบแบบสังเคราะห์
นี่คือคะแนนการทดสอบแบบรวมของเรา
Passmark
นี่คือการทดสอบ GPU ที่พบได้บ่อยที่สุด โดยจะประเมินการ์ดจอภายใต้ภาระงานหลากหลายประเภท โดยให้การทดสอบแยกต่างหาก 4 ครั้งสำหรับ Direct3D เวอร์ชัน 9, 10, 11 และ 12 (เวอร์ชันสุดท้ายใช้ความละเอียด 4K หากทำได้) รวมถึงการทดสอบเพิ่มเติมที่ใช้คุณสมบัติ DirectCompute
3DMark 11 Performance GPU
3DMark 11 เป็นการทดสอบ DirectX 11 เก่าโดย Futuremark ซึ่งประกอบไปด้วย 4 การทดสอบจาก 2 ฉาก: ฉากแรกแสดงการสำรวจซากเรือจมใต้น้ำโดยเรือดำน้ำหลายลำ อีกฉากหนึ่งแสดงวัดร้างลึกเข้าไปในป่าทึบ การทดสอบทั้งหมดใช้แสงวอลุ่ม (Volumetric Lighting) และ Tessellation อย่างหนัก แม้จะใช้ความละเอียด 1280x720 แต่ก็ยังค่อนข้างกินทรัพยากรฮาร์ดแวร์ ยกเลิกไปในเดือนมกราคม 2020 และถูกแทนที่โดย Time Spy
3DMark Cloud Gate GPU
Cloud Gate เป็นการทดสอบ DirectX 11 ระดับ 10 ที่ล้าสมัย ซึ่งเคยใช้สำหรับพีซีตามบ้านและแล็ปท็อปพื้นฐาน แสดงฉากการปล่อยยานอวกาศผ่านอุปกรณ์เทเลพอร์ตอวกาศประหลาด ด้วยความละเอียด 1280x720 เช่นเดียวกับ Ice Storm Benchmark ถูกยกเลิกในเดือนมกราคม 2020 และถูกแทนที่โดย 3DMark Night Raid
3DMark Ice Storm GPU
Ice Storm Graphics เป็นการทดสอบล้าสมัยในชุดการทดสอบ 3DMark ซึ่งเคยใช้วัดประสิทธิภาพของแล็ปท็อประดับเริ่มต้นและแท็บเล็ต Windows ใช้คุณสมบัติของ DirectX 11 ระดับ 9 ในการแสดงฉากต่อสู้ระหว่างยานอวกาศสองกองใกล้กับดาวเคราะห์น้ำแข็งที่ความละเอียด 1280x720 ยกเลิกไปในเดือนมกราคม 2020 และถูกแทนที่โดย 3DMark Night Raid
ประสิทธิภาพในการเล่นเกม
มาดูกันว่าการ์ดจอที่นำมาเปรียบเทียบเหมาะสำหรับการเล่นเกมมากน้อยแค่ไหน โดยผลการทดสอบเกมเฉพาะจะวัดเป็นเฟรมต่อวินาที (FPS)
ค่า FPS เฉลี่ยจากเกมพีซีทั้งหมด
นี่คือค่าเฉลี่ยเฟรมต่อวินาทีจากเกมยอดนิยมหลากหลายเกมในหลายความละเอียด:
| Full HD | 3−4
−7133%
| 217
+7133%
|
| 1440p | 2−3
−6100%
| 124
+6100%
|
| 4K | 1−2
−7600%
| 77
+7600%
|
ต้นทุนต่อเฟรม, $
| 1080p | ไม่มีข้อมูล | 2.53 |
| 1440p | ไม่มีข้อมูล | 4.43 |
| 4K | ไม่มีข้อมูล | 7.13 |
ประสิทธิภาพ FPS ในเกมยอดนิยม
Full HD
Low
| Cyberpunk 2077 | 3−4
−5767%
|
170−180
+5767%
|
Full HD
Medium
| Battlefield 5 | 0−1 | 180−190 |
| Cyberpunk 2077 | 3−4
−5767%
|
170−180
+5767%
|
| Escape from Tarkov | 3−4
−3933%
|
120−130
+3933%
|
| Far Cry 5 | 2−3
−16000%
|
322
+16000%
|
| Fortnite | 2−3
−15000%
|
300−350
+15000%
|
| Forza Horizon 4 | 7−8
−3886%
|
270−280
+3886%
|
| Forza Horizon 5 | 1−2
−32800%
|
329
+32800%
|
| PLAYERUNKNOWN'S BATTLEGROUNDS | 9−10
−1833%
|
170−180
+1833%
|
| Valorant | 30−35
−1166%
|
400−450
+1166%
|
Full HD
High
| Battlefield 5 | 0−1 | 180−190 |
| Counter-Strike: Global Offensive | 27−30
−930%
|
270−280
+930%
|
| Cyberpunk 2077 | 3−4
−5767%
|
170−180
+5767%
|
| Dota 2 | 16−18
−5838%
|
950−1000
+5838%
|
| Escape from Tarkov | 3−4
−3933%
|
120−130
+3933%
|
| Far Cry 5 | 2−3
−15200%
|
306
+15200%
|
| Fortnite | 2−3
−15000%
|
300−350
+15000%
|
| Forza Horizon 4 | 7−8
−3886%
|
270−280
+3886%
|
| Forza Horizon 5 | 1−2
−29800%
|
299
+29800%
|
| Metro Exodus | 2−3
−8850%
|
170−180
+8850%
|
| PLAYERUNKNOWN'S BATTLEGROUNDS | 9−10
−1833%
|
170−180
+1833%
|
| The Witcher 3: Wild Hunt | 7−8
−6129%
|
436
+6129%
|
| Valorant | 30−35
−1166%
|
400−450
+1166%
|
Full HD
Ultra
| Battlefield 5 | 0−1 | 180−190 |
| Cyberpunk 2077 | 3−4
−5767%
|
170−180
+5767%
|
| Dota 2 | 16−18
−5838%
|
950−1000
+5838%
|
| Escape from Tarkov | 3−4
−3933%
|
120−130
+3933%
|
| Far Cry 5 | 2−3
−14400%
|
290
+14400%
|
| Forza Horizon 4 | 7−8
−3886%
|
270−280
+3886%
|
| PLAYERUNKNOWN'S BATTLEGROUNDS | 9−10
−1833%
|
170−180
+1833%
|
| The Witcher 3: Wild Hunt | 7−8
−2900%
|
210
+2900%
|
| Valorant | 30−35
−1166%
|
400−450
+1166%
|
Full HD
Epic
| Fortnite | 2−3
−15000%
|
300−350
+15000%
|
1440p
High
| Counter-Strike 2 | 4−5
−5350%
|
210−220
+5350%
|
| Counter-Strike: Global Offensive | 7−8
−7271%
|
500−550
+7271%
|
| PLAYERUNKNOWN'S BATTLEGROUNDS | 12−14
−1358%
|
170−180
+1358%
|
| Valorant | 2−3
−24150%
|
450−500
+24150%
|
1440p
Ultra
| Cyberpunk 2077 | 0−1 | 100−110 |
| Escape from Tarkov | 3−4
−3900%
|
120−130
+3900%
|
| Far Cry 5 | 1−2
−22100%
|
222
+22100%
|
| Forza Horizon 4 | 3−4
−8033%
|
240−250
+8033%
|
| The Witcher 3: Wild Hunt | 2−3
−8200%
|
166
+8200%
|
1440p
Epic
| Fortnite | 2−3
−7450%
|
150−160
+7450%
|
4K
High
| Grand Theft Auto V | 14−16
−1100%
|
160−170
+1100%
|
| Valorant | 6−7
−5383%
|
300−350
+5383%
|
4K
Ultra
| Dota 2 | 0−1 | 0−1 |
| PLAYERUNKNOWN'S BATTLEGROUNDS | 2−3
−4700%
|
95−100
+4700%
|
4K
Epic
| Fortnite | 2−3
−3850%
|
75−80
+3850%
|
Full HD
Low
| Counter-Strike 2 | 300−350
+0%
|
300−350
+0%
|
Full HD
Medium
| Counter-Strike 2 | 300−350
+0%
|
300−350
+0%
|
Full HD
High
| Counter-Strike 2 | 300−350
+0%
|
300−350
+0%
|
| Grand Theft Auto V | 170−180
+0%
|
170−180
+0%
|
1440p
High
| Grand Theft Auto V | 140−150
+0%
|
140−150
+0%
|
| Metro Exodus | 120−130
+0%
|
120−130
+0%
|
1440p
Ultra
| Battlefield 5 | 180−190
+0%
|
180−190
+0%
|
4K
High
| Counter-Strike 2 | 95−100
+0%
|
95−100
+0%
|
| Metro Exodus | 80−85
+0%
|
80−85
+0%
|
| The Witcher 3: Wild Hunt | 150
+0%
|
150
+0%
|
4K
Ultra
| Battlefield 5 | 130−140
+0%
|
130−140
+0%
|
| Counter-Strike 2 | 95−100
+0%
|
95−100
+0%
|
| Cyberpunk 2077 | 50−55
+0%
|
50−55
+0%
|
| Escape from Tarkov | 80−85
+0%
|
80−85
+0%
|
| Far Cry 5 | 116
+0%
|
116
+0%
|
| Forza Horizon 4 | 190−200
+0%
|
190−200
+0%
|
นี่คือวิธีที่ R5 M320 และ RTX 5070 แข่งขันกันในเกมยอดนิยม:
- RTX 5070 เร็วกว่า 7133% ในความละเอียด 1080p
- RTX 5070 เร็วกว่า 6100% ในความละเอียด 1440p
- RTX 5070 เร็วกว่า 7600% ในความละเอียด 4K
นี่คือช่วงความแตกต่างของประสิทธิภาพที่สังเกตได้จากเกมยอดนิยม:
- ในเกม Forza Horizon 5 ด้วยความละเอียด 1080p และการตั้งค่า Medium Preset อุปกรณ์ RTX 5070 เร็วกว่า 32800%
โดยรวมแล้ว ในเกมยอดนิยม:
- RTX 5070 เหนือกว่าใน 41การทดสอบ (72%)
- เสมอกันใน 16การทดสอบ (28%)
สรุปข้อดีและข้อเสีย
| คะแนนประสิทธิภาพ | 1.14 | 68.94 |
| ความใหม่ล่าสุด | 5 พฤษภาคม 2015 | 4 มีนาคม 2025 |
| จำนวน RAM สูงสุด | 4 จีบี | 12 จีบี |
| การผลิตชิปด้วยลิทอกราฟี | 28 nm | 5 nm |
RTX 5070 มีข้อได้เปรียบ มีคะแนนประสิทธิภาพรวมสูงกว่าถึง 5947.4% และได้เปรียบด้านอายุการเปิดตัวอยู่ที่ 9 ปี และและมีกระบวนการลิทอกราฟีที่ก้าวหน้ากว่าถึง 460%
GeForce RTX 5070 เป็นตัวเลือกที่เราแนะนำ เนื่องจากมีประสิทธิภาพเหนือกว่า Radeon R5 M320 ในการทดสอบประสิทธิภาพ
โปรดทราบว่า Radeon R5 M320 เป็นการ์ดจอโน้ตบุ๊ก ในขณะที่ GeForce RTX 5070 เป็นการ์ดจอเดสก์ท็อป
