A10-9620P vs Processor N100
Aggregierte Leistungsbewertung
Basierend auf unseren aggregierten Benchmark-Ergebnissen übertrifft Processor N100 A10-9620P um beträchtliche 47%.
Primäre Details
Informationen über den Typ (für Desktops oder Laptops) und die Architektur von A10-9620P und Processor N100 sowie über die Startzeit des Verkaufs und die Kosten zu diesem Zeitpunkt.
Platz in der Leistungsbewertung | 2093 | 1788 |
Platz nach Beliebtheit | nicht in den Top-100 | 65 |
Typ | Für Laptops | Für Laptops |
Serie | Bristol Ridge | Intel Alder Lake-N |
Leistungseffizienz | 10.09 | 37.07 |
Architektur-Codename | Bristol Ridge (2016−2019) | Alder Lake-N (2023) |
Veröffentlichungsdatum | 1 Januar 2017 (7 Jahre vor) | 3 Januar 2023 (1 Jahr vor) |
Preis zum Zeitpunkt der Veröffentlichung | keine Angaben | $128 |
Detaillierte Spezifikationen
Quantitative Parameter von A10-9620P und Processor N100: Anzahl der Kerne und Threads, Taktraten, technologischer Prozess, Cache-Größe und Multiplikatorsperrstatus. Sie sprechen indirekt über die Leistung von A10-9620P und Processor N100, obwohl für eine genaue Bewertung die Testergebnisse berücksichtigt werden müssen.
Kerne | 4 | 4 |
Threads | 4 | 4 |
Grundfrequenz | 2.5 GHz | 0.1 GHz |
Maximale Frequenz | 3.4 GHz | 3.4 GHz |
Gesamter L1-Cache | keine Angaben | 96 KB (per core) |
Gesamter L2-Cache | 2 MB | 2 MB (shared) |
Gesamter L3-Cache | keine Angaben | 6 MB (shared) |
Technologischer Prozess | 28 nm | 10 nm |
Die-Größe | 250 mm2 | keine Angaben |
Maximale Kerntemperatur | 90 °C | 105 °C |
Anzahl der Transistoren | 3100 Million | keine Angaben |
64-Bit-Unterstützung | + | + |
Kompatibilität mit Windows 11 | - | + |
Kompatibilität
Informationen zur Kompatibilität von A10-9620P und Processor N100 mit anderen Computerkomponenten: Motherboard (achten Sie auf den Sockeltyp), Netzteil (achten Sie auf die Leistungsaufnahme) usw. Nützlich bei der Planung einer zukünftigen Computerkonfiguration oder beim Aufrüsten einer bestehenden Konfiguration. Beachten Sie, dass die Leistungsaufnahme einiger Prozessoren auch ohne Übertaktung deutlich über ihrer nominalen TDP liegen kann. Einige können sogar ihre deklarierte Thermik verdoppeln, vorausgesetzt, das Motherboard erlaubt es, die CPU-Leistungsparameter zu tunen.
Max Anzahl der Prozessoren in der Konfiguration | keine Angaben | 1 |
Socket | FP4 | Intel BGA 1264 |
Leistungsaufnahme (TDP) | 15 Watt | 6 Watt |
Technologien und zusätzliche Anweisungen
Technologische Lösungen und zusätzliche Anweisungen, die von A10-9620P und Processor N100 unterstützt werden. Sie brauchen diese Informationen, wenn Sie eine bestimmte Technologie benötigen.
AES-NI | - | + |
FMA | - | + |
AVX | - | + |
Enhanced SpeedStep (EIST) | keine Angaben | + |
Sicherheitstechnologien
A10-9620P- und Processor N100-Technologien zur Erhöhung der Sicherheit, z. B. durch den Schutz vor Hackerangriffe.
TXT | keine Angaben | + |
Virtualisierungstechnologien
Hier sind die von A10-9620P und Processor N100 unterstützten Technologien aufgeführt, mit denen virtuelle Maschinen beschleunigt werden.
VT-d | keine Angaben | + |
VT-x | keine Angaben | + |
Speicher-Spezifikationen
Typen, maximale Menge und Kanalanzahl des von A10-9620P und Processor N100 unterstützten RAM. Abhängig von den Motherboards können höhere Speicherfrequenzen unterstützt werden.
RAM-Typen | DDR3, DDR4 | DDR4, DDR5 |
Grafik-Spezifikationen
Allgemeine Parameter der in A10-9620P und Processor N100 integrierten Grafikkarte.
Integrierte Graphiken Vergleichen | AMD Radeon R5 (Bristol Ridge) ( - 758 MHz) | Intel UHD Graphics 24EUs (Alder Lake-N) ( - 750 MHz) |
Peripheriegeräte
Technische Daten und Anschluss der von A10-9620P und Processor N100 unterstützten Peripheriegeräte.
PCI Express-Revision | keine Angaben | 3.0 |
Anzahl der PCI-Linien | keine Angaben | 9 |
Synthetische Benchmark-Leistung
Nicht-Gaming-Benchmarks Leistung von A10-9620P und Processor N100. Die Gesamtpunktzahl liegt zwischen 0 und 100, wobei 100 dem derzeit schnellsten Prozessor entspricht.
Kombinierte synthetische Benchmark-Ergebnisse
Dies ist unsere kombinierte Benchmark-Leistungsbewertung. Wir verbessern regelmäßig unsere kombinierten Algorithmen, aber wenn Sie einige wahrgenommene Ungereimtheiten finden, können Sie sich gerne im Kommentarbereich äußern, wir beheben Probleme in der Regel schnell.
Cinebench 10 32-bit single-core
Cinebench R10 ist ein alter Raytracing-Benchmark für Prozessoren von Maxon, den Autoren von Cinema 4D. Seine Single-Core-Version verwendet nur einen CPU-Thread, um ein futuristisch aussehendes Motorrad zu rendern.
Cinebench 10 32-bit multi-core
Cinebench Release 10 Multi Core ist eine Variante von Cinebench R10, die alle Prozessor-Threads nutzt. Die mögliche Anzahl der Threads ist bei dieser Version auf 16 begrenzt.
wPrime 32
wPrime 32M ist ein mathematischer Multi-Thread-Prozessor-Test, der die Quadratwurzeln der ersten 32 Millionen Integer-Zahlen berechnet. Sein Ergebnis wird in Sekunden gemessen, so dass der Prozessor umso schneller ist, je geringer das Benchmark-Ergebnis ist.
Cinebench 11.5 64-bit multi-core
Cinebench Release 11.5 Multi Core ist eine Variante von Cinebench R11.5, die alle Prozessor-Threads nutzt. Es werden in dieser Version maximal 64 Threads unterstützt.
Cinebench 15 64-bit multi-core
Cinebench Release 15 Multi Core ist eine Variante von Cinebench R15, die alle Prozessor-Threads nutzt.
Cinebench 15 64-bit single-core
Cinebench R15 (steht für Release 15) ist ein Benchmark, der von Maxon, den Autoren von Cinema 4D, erstellt wurde. Er wurde von späteren Versionen von Cinebench abgelöst, die modernere Varianten der Cinema 4D-Engine verwenden. Die Single-Core-Version (manchmal auch Single-Thread genannt) verwendet nur einen einzigen Prozessor-Thread, um einen Raum voller reflektierender Kugeln und Lichtquellen zu rendern.
Cinebench 11.5 64-bit single-core
Cinebench R11.5 ist ein alter Benchmark von Maxon, den Autoren von Cinema 4D. Er wurde durch spätere Versionen von Cinebench abgelöst, die modernere Varianten der Cinema 4D-Engine verwenden. Die Single-Core-Version belastet einen einzelnen Thread mit Raytracing, um einen glänzenden Raum voller Kristallkugeln und Lichtquellen zu rendern.
x264 encoding pass 2
x264 Pass 2 ist eine langsamere Variante der x264-Videokompression, die eine Ausgabedatei mit variabler Bitrate erzeugt, was zu einer besseren Qualität führt, da die höhere Bitrate verwendet wird, wenn sie mehr benötigt wird. Das Benchmark-Ergebnis wird weiterhin in Bildern pro Sekunde gemessen.
x264 encoding pass 1
Der x264-Benchmark verwendet die MPEG 4 x264-Komprimierungsmethode, um ein HD-Beispielvideo (720p) zu kodieren. Pass 1 ist eine schnellere Variante, die eine Ausgabedatei mit konstanter Bitrate erzeugt. Das Ergebnis wird in Bildern pro Sekunde gemessen, was bedeutet, wie viele Bilder der Quellvideodatei pro Sekunde kodiert wurden.
WinRAR 4.0
WinRAR 4.0 ist eine veraltete Version einer beliebten Dateikomprimierungssoftware. Sie enthält einen internen Geschwindigkeitstest, bei dem die "beste" Einstellung der RAR-Komprimierung für große, zufällig generierte Datenstücke verwendet wird. Die Ergebnisse werden in Kilobytes pro Sekunde gemessen.
Zusammenfassung der Vor- und Nachteile
Leistungsbewertung | 1.60 | 2.35 |
Integrierte Graphiken | 2.43 | 2.32 |
Neuheit | 1 Januar 2017 | 3 Januar 2023 |
Technologischer Prozess | 28 nm | 10 nm |
Leistungsaufnahme (TDP) | 15 Watt | 6 Watt |
A10-9620P hat 4.7% schnellere integrierte GPU.
Processor N100 hingegen hat eine um 46.9% höhere Gesamtleistungsbewertung, einen Altersvorsprung von 6 Jahren, ein 180% fortschrittlicheres Lithografieverfahren, und 150% weniger Stromverbrauch.
Der Processor N100 ist unsere empfohlene Wahl, da er den A10-9620P in Leistungstests schlägt.
Wenn Sie noch Fragen zur Wahl zwischen A10-9620P und Processor N100 haben - fragen Sie in den Kommentaren, und wir werden antworten.
Ähnliche Prozessorvergleiche
Wir haben mehrere ähnliche Vergleiche von Prozessoren im gleichen Marktsegment und mit relativ ähnlicher Leistung wie die auf dieser Seite getesteten ausgewählt.