A12-9800E vs EPYC 9555
Łączna ocena wydajności
EPYC 9555 przewyższa A12-9800E o aż 3733% w oparciu o nasze zagregowane wyniki benchmarku.
Główne szczegóły
Informacje o typie (dla komputerów stacjonarnych lub laptopów) i architekturze A12-9800E i EPYC 9555, a także o czasie rozpoczęcia sprzedaży i cenie w tamtym czasie.
Miejsce w rankingu wydajności | 1895 | 6 |
Miejsce według popularności | nie w top-100 | nie w top-100 |
Ocena efektywności kosztowej | 1.56 | 3.05 |
Typ | Do komputerów stacjonarnych | Do serwerów |
Wydajność energetyczna | 5.90 | 22.00 |
Kryptonim architektury | Bristol Ridge (2016−2019) | Turin (2024) |
Data wydania | 27 lipca 2017 (7 lat temu) | 10 października 2024 (mniej niż rok temu) |
Cena w momencie wydania | $105 | $9,826 |
Ocena efektywności kosztowej
Aby uzyskać indeks, porównujemy wydajność procesorów i ich koszt, biorąc pod uwagę koszt innych procesorów.
EPYC 9555 ma 96% lepszy stosunek ceny do jakości niż A12-9800E.
Szczegółowe specyfikacje
Parametry ilościowe A12-9800E i EPYC 9555: liczba rdzeni i wątków, częstotliwości taktowania, proces technologiczny, ilość pamięci podręcznej i stan blokady mnożnika. Pośrednio świadczą o wydajności A12-9800E i EPYC 9555, chociaż w celu dokładnej oceny należy wziąć pod uwagę wyniki testów.
Rdzeni | 4 | 64 |
Strumieni | 4 | 128 |
Częstotliwość podstawowa | 3.1 GHz | 3.2 GHz |
Maksymalna częstotliwość | 3.8 GHz | 4.4 GHz |
Pamięć podręczna 1-go poziomu | brak danych | 80 KB (na rdzeń) |
Pamięć podręczna 2-go poziomu | 2048 KB | 1 MB (na rdzeń) |
Pamięć podręczna 3-go poziomu | 0 KB | 256 MB (łącznie) |
Proces technologiczny | 28 nm | 4 nm |
Rozmiar kryształu | 246 mm2 | 8x 70.6 mm2 |
Maksymalna temperatura rdzenia | 90 °C | brak danych |
Maksymalna temperatura obudowy (TCase) | 74 °C | brak danych |
Ilość tranzystorów | 1,178 million | 66,520 million |
Obsługa 64 bitów | + | + |
Zgodność z Windows 11 | - | brak danych |
Kompatybilność
Informacje o kompatybilności A12-9800E i EPYC 9555 z innymi komponentami komputera: płytą główną (sprawdź typ gniazda), zasilaczem (sprawdź pobór mocy) itd. Przydatne przy planowaniu przyszłej konfiguracji komputera lub modernizacji istniejącej. Należy pamiętać, że pobór mocy niektórych procesorów może znacznie przekraczać ich nominalne TDP, nawet bez podkręcania. Niektóre z nich mogą nawet podwoić swoje deklarowane termiki, jeśli płyta główna pozwala na dostrojenie parametrów zasilania procesora.
Maksymalna liczba procesorów w konfiguracji | 1 | 2 |
Socket | AM4 | SP5 |
Pobór mocy (TDP) | 35 Watt | 360 Watt |
Technologia i dodatkowe instrukcje
Wymienione są tutaj obsługiwane A12-9800E i EPYC 9555 rozwiązania technologiczne oraz zestawy dodatkowych instrukcji. Takie informacje będą potrzebne, jeśli do procesora wymaga się obsługi określonych technologii.
AES-NI | + | + |
FMA | + | - |
AVX | + | + |
FRTC | + | - |
FreeSync | + | - |
PowerTune | + | - |
TrueAudio | + | - |
PowerNow | + | - |
PowerGating | + | - |
VirusProtect | + | - |
Precision Boost 2 | brak danych | + |
Technologia wirtualizacji
Wymienione są Obsługiwane A12-9800E i EPYC 9555 technologie, które przyspieszają działanie maszyn wirtualnych.
AMD-V | + | + |
Specyfikacja pamięci
Typy, maksymalna ilość i ilość kanałów pamięci RAM obsługiwanych przez A12-9800E i EPYC 9555. W zależności od płyt głównych mogą być obsługiwane wyższe częstotliwości pamięci.
Rodzaje pamięci RAM | DDR4-2400 | DDR5 |
Ilość kanałów pamięci | 2 | brak danych |
Specyfikacje graficzne
Ogólne parametry kart graficznych wbudowanych w A12-9800E i EPYC 9555.
Zintegrowana karta graficzna | AMD Radeon R7 Graphics | N/A |
Liczba rdzeni iGPU | 8 | brak danych |
Enduro | + | - |
UVD | + | - |
VCE | + | - |
Interfejsy graficzne
Interfejsy i połączenia obsługiwane przez wbudowane w A12-9800E i EPYC 9555 karty graficzne.
DisplayPort | + | - |
HDMI | + | - |
Obsługa graficznego interfejsu API
API, obsługiwane przez wbudowane w A12-9800E i EPYC 9555 karty graficzne, w tym ich wersje.
DirectX | DirectX® 12 | brak danych |
Vulkan | + | - |
Urządzenia peryferyjne
Obsługiwane A12-9800E i EPYC 9555 urządzenia peryferyjne i sposoby ich podłączenia.
Rewizja PCI Express | 3.0 | 5.0 |
Ilość linii PCI-Express | 8 | 128 |
Wydajność syntetycznego benchmarku
Są to wyniki testu A12-9800E i EPYC 9555 na temat wydajności w testach porównawczych innych niż gry. Całkowity wynik wynosi od 0 do 100, przy czym 100 odpowiada obecnie najszybszemu procesorowi.
Łączny wynik syntetycznego testu porównawczego
To jest nasza łączna ocena wydajności benchmarku.
Passmark
Passmark CPU Mark jest szeroko rozpowszechnionym benchmarkiem, składającym się z 8 różnych testów, włączając w to matematykę całkowitą i zmiennoprzecinkową, rozszerzone instrukcje, kompresję, szyfrowanie i obliczenia fizyczne. Istnieje również jeden oddzielny scenariusz jednowątkowy.
Podsumowanie zalet i wad
Ocena skuteczności działania | 2.17 | 83.17 |
Nowość | 27 lipca 2017 | 10 października 2024 |
Rdzeni | 4 | 64 |
Strumieni | 4 | 128 |
Proces technologiczny | 28 nm | 4 nm |
Pobór mocy (TDP) | 35 Wat | 360 Wat |
A12-9800E ma 928.6% niższe zużycie energii.
Z drugiej strony, EPYC 9555 ma 3732.7% wyższy zagregowany wynik wydajności, ma przewagę wiekową wynoszącą 7 lat, ma 1500% więcej fizycznych rdzeni i 3100% więcej wątków, i ma 600% bardziej zaawansowany proces litografii.
Model EPYC 9555 to nasz rekomendowany wybór, ponieważ w testach wydajności pokonuje on A12-9800E.
Należy przy tym zdawać sobie sprawę z tego, że A12-9800E jest przeznaczona dla komputerów stacjonarnych, a EPYC 9555 - dla serwerów i stacji roboczych.
Inne porównania
Zebraliśmy wybór porównań procesorów, począwszy od ściśle dopasowanych procesorów, a skończywszy na innych porównaniach, które mogą być interesujące.